Fujisaki-Okamoto - a recipe for
post-quantum public key
encryption

CrySP Speaker Series on Privacy

Kathrin Hovelmanns

April 3rd, 2024, University of Waterloo

About me

Studied Math in Essen, GER... ... PhD on Crypto (Dec 20) in ... postdoc, then faculty (Sep
Bochum, still GER ... '22) at TUEe, NL

mll!“m

- ..uu,u,uu,ull.ﬂlmu—'

A Ti_.-a‘—-“
i u,u m" L "N !
]

CET “,

: N |

"“ 'H S

u——(Fflu=2x(f)

£f

Did you use any cryptography today?

=) QSI Spring School — Spring School « X ﬂ Amazon.com. Spend less. Smile X +

< G O E'I amazon.com ﬂ?

Hello, sign in

Deliver to Py
am a;on © Portugal All ¥ | Search Amazon ==EN- Account&

— All Today's Deals Customer Service Registry Gift Cards Sell

Amazon uses https — https invokes TLS — TLS uses crypto

TLS is everywhere:
shopping, banking, Netflix, gmail, Facebook, ...

Quantum computers vs crypto

?

Why care about solutions today?

Major investments (est.: $35.5 billion*)

Quantum Delta Go g Ie S ETE Q : ; J
eeeeeeeee Civpe 0 2

(i@ =. Microsoft OUANTUM

FLAGSHIP

‘Store now, exploit later’

‘The standards are coming anyways’ ©

* World Economic Forum, Insight report, September ‘22

https://www.google.com/imgres?imgurl=https%3A%2F%2Fquantum-internet.team%2Fwp-content%2Fuploads%2Fsites%2F3%2F2022%2F08%2FQDNL_Logo-e1661266202751.png%3Ft%3D1661266202&tbnid=5CCY5pGUjFtgCM&vet=12ahUKEwjxoYento7_AhWa_rsIHcM8Dt0QMygCegUIARCzAQ..i&imgrefurl=https%3A%2F%2Fquantum-internet.team%2Fqdnl%2F&docid=HhqLGqhmeslGrM&w=177&h=140&q=quantum%20delta&client=firefox-b-d&ved=2ahUKEwjxoYento7_AhWa_rsIHcM8Dt0QMygCegUIARCzAQ

Secret-key crypto: quantum impact does not seem to be catastrophic -

but how to share secret keys ad hoc?

Public-key encryption (PKE)

| should tell Bob
to selll

:P

&

Alice

Image source: xkcd.com

Bob

Public-key encryption (PKE)

| should tell Bob
to selll
nﬂ-

= e

Public-key encryption (PKE)

| should tell Bob Key server
to selll

nEl

&

Alice

Image source: xkcd.com

Public-key encryption (PKE)

8>

Key server

Public-key encryption (PKE)

8>

Key server

Public-key encryption (PKE)

8>

Key server

&

R

Alice

Public-key encryption (PKE)

8>

Key server

&

f——— X 7

Alice

Public-key encryption (PKE)

Image source: xkcd.com

Public-key encryption (PKE)

Obvious goal: without the secret key, encryptions should be hard to invert.

Image source: xkcd.com

Public-key encryption (PKE)

Obvious goal 2: encryptions should not leak significant info about their plaintexts.

Image source: xkcd.com

IND-CPA security game

INDistinguishability under Chosen-Plaintext Attacks

,Sell“??
,Hold“??

Left game

Right game

Adversary gets public key (b

Adversary gets encryption of:

Adversary chooses two messages 11, and m,

mq

m;

Adversary guesses which game it’s playing

Question: Can we have IND-CPA security if encryption is deterministic*?

Image source: xkcd.com

* = encrypting a message always
gives the same result

,Sell“??
,Hold“??

IND-CPA security game

INDistinguishability under Chosen-Plaintext Attacks

Left game Right game A

Adversary gets public key (b
Adversary chooses two messages 11, and m,

Adversary gets encryption of:

mq m;

Adversary guesses which game it’s playing

Question: Can we have IND-CPA security if encryption is deterministic*?

* = encrypting a message always

No. (But encryption could still be hard to invert.) gives the same result

Image source: xkcd.com

Maybe | can trick
Bob‘s notebook...

Chosen-ciphertext attacks

Bob

Image source: xkcd.com

Maybe | can trick
Bob‘s notebook...

Chosen-ciphertext attacks

Image source: xkcd.com

Chosen-ciphertext attacks

Chosen Ciphertext Attacks Against Protocols
Based on the RSA Encryption Standard
PKCS #1

Daniel Bleichenbacher

Bell Laboratories
700 Mountain Ave.
Murray Hill, NJ 07974
E-mail: bleichen®research.bell-labs.com

[Bleichenbacher 98]

Bob

Image source: xkcd.com

,Sell“??
,Hold“??

IND-CCA security game

INDistinguishability under Chosen-Ciphertext Attacks. J,,

Left game Right game T

Adversary gets public key Cb
Adversary chooses two messages m, and m,

Adversary gets encryption of:

mq m;

Adversary guesses which game it’s playing

Difference to IND-CPA: Adversary can additionally request decryptions for any
ciphertext is chooses...

Wait, can’t this always be won?

Image source: xkcd.com

,Sell“??
,Hold“??

IND-CCA security game

INDistinguishability under Chosen-Ciphertext Attacks. j,

Adversary gets public key (b
Adversary chooses two messages 11, and m,

Adversary gets encryption of:

mq m;

Adversary guesses which game it’s playing

Difference to IND-CPA: Adversary can additionally request decryptions for any
ciphertext is chooses... except the provided encryption of m,/m,

Image source: xkcd.com

Left game Right game A

Back to sharing symmetric keys

Goal: Find a public-key method to securely establish symmetric keys K, .
(Why not just use PKE to send encrypted messages? Efficiency.)
Such a method is called a Key Encapsulation Mechanism (KEM).

— KEMs are what NIST is looking for!

Bob's %ﬁ o (Bob's
publlc key | secret key

Alice Bob

Image source: xkcd.com

Key Encapsulation Mechanisms (KEMs)

A KEM consists of 3 Algorithms:

1. KeyGen: Outputs a public/secret key pair pk, sk (like in public-key encryption)
2. Encapsulate(pk): Use pk to create K, and ciphertext c that ‘encrypts’ K.,

3. Decapsulate(sk, c): Use sk to recreate (‘decrypt’) K, from ¢

C = m O
Bobs " Bob’s
publlc key . secret key

Alice Bob

Image source: xkcd.com

What is Bob
up to?

A ciphertext ¢ shouldn‘t leak substantial information about K, .)

KEMs: Security definition

- |\K/m? Q
publlc key secret key
Alice Bob

Image source: xkcd.com

Indistinguishability games for KEMs

IND-CPA-KEM security: INDistinguishability for KEMs.

Left game

Right game

Adversary gets public key %
Adversary gets ciphertext c that ‘encrypts’ a symmetric key K., together with

The Ky, that belongs to ¢

A uniformly random Ksym

Adversary guesses which game it’s playing

Image source: xkcd.com

What is Bob
up to?

What is Bob
up to?

Indistinguishability games for KEMs

IND-CCA-KEM security: INDistinguishability for KEMs under Chosen-
Ciphertext Attacks.

Left game Right game

Adversary gets public key %
Adversary gets ciphertext c that ‘encrypts’ a symmetric key K., together with

The Ky, that belongs to ¢ A uniformly random K.,

Adversary guesses which game it’s playing

Difference to IND-CPA: Adversary can additionally request decryptions for any
ciphertext is chooses... except the provided ‘challenge’ ciphertext c.

Image source: xkcd.com

KEMSs in the NIST standardization process

Shared approach: PKE from hardness assumption + Fujisaki-Okamoto ‘recipe’

Fujisaki-Okamoto (FO): ‘generic’ encryption-to-key-encapsulation recipe

. 009

"‘* = moduleLWE encryption, plugged into FO

T AR

\ FrodoKEM | = LWE encryption, plugged into FO

- Q
publlc key secret key

Alice Bob

Fujisaki-Okamoto KEMs: initial idea

Goal: Find a public-key method to securely establish symmetric keys K.,.

You may use a public-key encryption scheme that is one-way secure.

Breaking one-wayness:

A must invert @

Bobs iﬁf%] " Bob’s
publlc key - secret key

Alice Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Fujisaki-Okamoto KEMs: initial idea

Goal: Find a public-key method to securely establish symmetric keys Ky, .

You may use a public-key encryption scheme that is one-way secure.

Pick random message m

Encrypt m:

m

(b Bob's ﬁ a (Bob's
publlc key | secret key
Alice Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Fujisaki-Okamoto KEMs: initial idea

Goal: Find a public-key method to securely establish symmetric keys Ky, .

You may use a public-key encryption scheme that is one-way secure.

What should Alice and |
Bob pick as K, ?

m Maybe Ky, = m?
Set Ksym =777

Pick random message m
Encrypt m:

(b Bob's ﬁ a (Bob's
publlc key | secret key
Alice Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Fujisaki-Okamoto KEMs: initial idea

Goal: Find a public-key method to securely establish s
You may use a public-key encryption scheme that is o

What should Alice and |
Bob pick as K, ?

m Maybe Ky, = m?
Set Ksym =777

Pick random message m
Encrypt m:

(b Bob's ﬁ o (Bob's
publlc key | secret key
Alice Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Fujisaki-Okamoto KEMs: initial idea

Goal: Find a public-key method to securely establish symmetric keys K, .

You may use a public-key encryption scheme and a hash function.

Decrypt ?
m

Pick random message m
Encrypt m:

Set Ky, = Hash(m)

o
o
n Q
(b Bob's ﬁ o (Bob's
publlc key | secret key
Alice Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

m

Set Ky, = Hash(m)

Fujisaki-Okamoto KE

Goal: Find a public-key method to

You may use a public-key encrypti

Pick random message m
Encrypt m:

Set Ky, = Hash(m)

Q: Is this secure?

Breaking the KEM:

Goal: I

Show that A has 0 chance breaking | Seeing an encryption of m,
the KEM without inverting A’s task is to tell Ky, =

encryption. Hash(m) apart from random.

(b Bob’s
public key

Alice

\ 4

Bob's

secret key

Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Interlude: the Provable Security paradigm

* Cryptographic design u’v:=:=’..
* Security model (‘game’) el /
* Security ‘proof’ random’

%Breaking the KEM:
A

Seeing an encryption of m,
A’s task is to tell Ky, =
Hash(m) apart from random.

Why formal models? To
avoid ambiguity.

Security ‘proofs’

Intuition: ‘If it’s hard to solve problem P, then design X is secure’

e.g. inverting encryptions e.g. Fujisaki-Okamoto KEM

Proof approach:

* Imagine (black-box) attacker A, breaking X according to security game G (e.g.,
distinguishing KEM output keys from random)

4 Security N
game G X-instance

P

_) " break

Security ‘proofs’

Intuition: ‘If it’s hard to solve problem P, then design X is secure’

e.g. inverting encryptions

Proof approach:

* Imagine (black-box) attacker A, breaking X according to security game G (e.g.,

e.g. Fujisaki-Okamoto KEM

distinguishing KEM output keys from random)

 Construct reduction B that uses A to solve problem P

P-instance

v

-

P
<«

Solution for P-instance

Reduction B
4 Use P-instance) _
. . X-instance _
to simulate security g
game G)
_ J break

A

Security ‘proofs’

Intuition: ‘If it’s hard to solve problem P, then design X is secure’

e.g. inverting encryptions e.g. Fujisaki-Okamoto KEM

I'MNOT LAZY, I'M
Proof approach: INAITINGFOR'A REDUCTION

* Imagine (black-box) attacker A, breaking X according to security game G (e.g.,
distinguishing KEM output keys from random)

 Construct reduction B that uses A to solve problem P
4 Reduction B N

-

Use P-instance)

to simulate security
game G
Solution for P-instance K \) break

P-instance X-instance

v

A

P
<«

A

Security ‘proofs’: FO example

Intuition: ‘If it’s hard to invert encryptions, then the Fujisaki-Okamoto KEM is secure’

Proof approach:
 Imagine (black-box) attacker A, distinguishing KEM output keys from random

 Construct reduction B that uses A to invert encryptions

4 Reduction B I
4 I

—9
pk, ¢ = encryption of m Pk, ¢, Ksym =:

A

m="7 k _) <’Ieft’/’right’

A

Security ‘proofs’: FO example

Intuition: ‘If it’s hard to invert encryptions, then the Fujisaki-Okamoto KEM is secure’

Proof approach: Qs:
* Imagine (black-box) attacker A, distinguishing KEM outy How can B simulate Ksym?

e Construct reduction B that uses A to invert encryptions How does B invert c?
4 Reduction B N
4 I
pk, ¢ = encryption of m Pk, ¢, Ksym =?

A

m=7? k _ J <’Ieft’/’right’

A

We'll use the random oracle model (ROM)

Heuristic: Replace hash function
Hash: {0,1}" —» {0,1}™
with ‘oracle box’ for truly random

f:{0,13" - {0,1)™

4 Security N

game G

for design X

o

Oracle for f

(>

/

X-instance _ %

break A

We'll use the random oracle model (ROM)

Reduction B
Oracle for f

Heuristic: Replace hash function
Hash: {0,1}" —» {0,1}™
with ‘oracle box’ for truly random
f:10,13" - {0,1}™

P-instance

(" Use problem A

instance

" Solution for P-instance

(>

o

to simulate
\.security game /

break

e\
=y

Perks of the random oracle model

Reduction B
Oracle for f

Unpredictability of / (x) without asking

oracle for f(x)

(e.g., Ksym = f(m))

Picking the ys smartly enough, B can

a) trick A into solving B’s problem

b) feign secret knowledge it would - in

principle - need for A’s security game

P-instance

v

4 Use problem\

instance

P
<«

Solution for P-instance

& N
73

y

to simulate
\.security game /

.
=y

break

Security argument for FO, using the ROM
Reductiongadeforf \

Intuition: ‘If it’s hard to invert encryptions, then
the Fujisaki-Okamoto KEM is secure’ Qs:
: +Q
\”’y
o

How can B simulate K, ?

How does B invert c?

k

A\
4 N\
vk, ¢ .Use PKE Dk, ¢, Kgym =
Instance g
to simulate)
=7 __KEM game ~ break A

v

3
|

Security argument for FO, using the ROM

Reduction B
Intuition: ‘If it’s hard to invert encryptions, then Oracle for f

the Fujisaki-Okamoto KEM is secure’ Qs:
v How can B simulate K,,,,? i}’s’
o)

How does B invert c?

* Unpredictability = A has 0 chance telling
:= f(m) from $ (random) unless it queries P
-333 7|

Ksym ’
oracle f on the plaintext m that belongs to ¢
k

m
4)
pk' I8 Use PKE pk' C, Ksym e $
instance g
to simulate)
\ A

v

P
<«

m=7? KEM game / break

Pr[A breaks Ksym] < Pr[A queries f on m]|

Security argument for FO, using the ROM

- . Reduction B
Intuition: ‘If it’s hard to invert encryptions, then Oracle for f

the Fujisaki-Okamoto KEM is secure’ Qs:
v How can B simulate K,,,,? i}’s’
v How does B invert c? =

* Unpredictability = A has 0 chance telling
K¢ym = f(m) from $ (random) unless it queries 7

oracle f on the plaintext m that belongs to ¢

* Butthen B sees m (it still needs to guess in which k
of the g many RO queries though)

m
4)
vk, c Use PKE pk, c, Ksym =$
instance g
« to simulate)
\ A

v

m KEM game / break

Pr[A breaks Ksym] < Pr[A queries f on m]|
< g - Pr[B can invert]

The ROM heuristic seems weird.

© No theoretical justification
Counterexamples: (convoluted) designs that are
* secure in the ROM, but
* insecure when instantiating RO with any hash function

© Good track record for ‘natural’ schemes
Helps identify design bugs
Attacks on ‘ROM-secure’ schemes would be kind of surprising

Skeptical cat
regards

your tale
with
suspicion

Recap: initial idea

Goal: Find a public-key method to securely establish symmetric keys Ky, .

You may use a public-key encryption scheme and a hash function.
N

Set Ky, = Hash(m)

NP 0

(b Bob's ﬁ a (Bob's
publlc key |

secret key
Alice Bob

Decrypt

Pick random message m

Encrypt m:
m

Set Ky, = Hash(m)

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Security against chosen-ciphertext attacks

Goal: Find a way to establish symmetric keys K,,,,, with chosen-ciphertext security.

— attacker allowed to request decapsulation for any ciphertext.

AREWE THEREYET?

High-level idea: alter how the KEM en-/decapsulates:

Altered decapsulation will
e detect dishonest ciphertexts
* punish those by rejecting to return a meaningful key.

— hard for attacker to request useful decapsulations

‘Full’” FO

Goal: Make decryptions useless for Al

Instead of randomly sampling
encryption randomness 7:

Pick random message m

> User = Hash'(m)

Encrypt m, deterministically <
Set Ky, == Hash(m)

% Bob’s " Bob’s
public key - secret key

Alice Bob

Image source: xkcd.com

Using Hash'(m) as randomness

a

‘Full’” FO

Goal: Make decryptions useless for Al Y
Decrypt | Yin

Only if m encrypts to E””F ;

Pick random message m

Set K, := Hash(m)

Encrypt m, deterministically
Set Ky, = Hash(m)

Otherwise, reject!

Bob S ﬁ o (Bob's
publlc key | secret key
Bob

Alice
Image source: xkcd.com

Using Hash'(m) as randomness

a

‘Full’

The key for

Decrypt m
@s Hash(m')! YP

Only if m encrypts to m:

Set K, := Hash(m)

Otherwise, reject!

% Bob’s
public key

Image source: xkcd.com

(Bob’s
secret key

Bob

‘Full’” FO

Goal: Make decryptions useless for Al

Decrypt m
Only if m encrypts to m:

Set K, := Hash(m)

Pick random message m

Otherwise, reject!

This creates side-channel
vulnerabilities.

(smarter ‘works-always’
solutions are elusive so far ®)

b ﬂ Q
% Bob's 'Ni I | f Bob's
public key A - secret key

Alice Bob

\ 4

Image source: xkcd.com

‘Full’” FO

Goal: Make decryptions useless for Al m
Decrypt

Only if m encrypts to m:

Pick random message m

Set K, := Hash(m)

» Otherwise, reject!

Not as critical, but still subject to debate:

Which rejection method is better?

* returning explicit failure symbol 17
* returning pseudorandom key?

>

Image source: xkcd.com

(Bob’s
secret key

public key

Alice Bob

Adapting security proofs to quantum attackers

4)

%

e ‘Online’ functionality (decryption, signing, ...) stays classical

- /

e ‘Offline’ functionality computable by quantum attacker

Random oracle model: Hash functions can be computed offline

— Quantum access to random oracles!

Quantum bits

Quantum bit\

Quantum bits

Notation:
« |0) for ,truly O

Quantum bit\

0

Quantum bits

Notation:
« |0) for ,truly O
e |1) for ,truly 1

} ‘base states’

Quantum bit\

0

Quantum bits

. / Classical bit
Notation:

« |0) for ,truly O

{ ’
e 1) for truly 1° } base states

‘Non- base states’:
* ay|0) + a,|1) for complex numbers «, o,

* Requirement on (o, a4): ‘Superposition’

0

Quantum bit\

0

2 2
1ol + lel]” =1 of |0) and | 1)
Example: uniform (,half-half’) state K
1 1
—10)+—=|1
\/2|) ﬁl)

Measuring guantum bits

Quantum bit Classical bit

TT D\ PT P

What happens?

0 with probability |Iao||

apl0) + a,|1) ‘collapses’ to {
’ ! 1 with probablllty||a1||

Quantum bitstrings (qubit strings)

Same principle: Put all possible bitstrings of length £ into superposition

E.g., for length 2:

* qubit strings are of the form ayy|00) + a¢1|01) + a15|10) + a;1|11)

e similar requirement on ‘probability coefficients’ a,q, -, @11
00 11

2
||(X00||2+||C¥01||2+||a10||2+ ||a11|| =1
Measuring:

@o0]|00) + ag1|01) + a14|10) + a41]|11) collapses to ‘00 with prob. |Ia00||2etc.

Computing on quantum states

Fact: Any quantum computation can be described by a ‘nicely-invertible’ map U.

Example: a map for strings of length 2

00) - |00) ™ Gate description:
OO S S E T 1) B —]—Ib)
> 11D , CNOT ,
11) > |10) b)) — — |b’ @ b)

Random oracles: How to describe them in a ‘nicely-invertible’ way?

Quantum-accessible random oracles (QROs)

Model the QRO as oracle box O; for random function f: X — Y as follows:

(>
ey
|X>X —‘S”_O B |x>x
Yy — T = ly® F(0))y

So for any classical input value x,
)]0 ---0) = |x)|f ().
(Or simply carries over the probability coefficients)

[Boneh Dagdelen Fischlin Lehmann Schaffner Zhandry 11]

What about our Random Oracle proof?

e ‘See how A ticks’?

e.g., seeing plaintext m belonging to EmF in A’s queries

m now "hides’ in superpositions (linear combinations)

am|m>|ym> T Upot mant m)l)’not m)

How to extract m from the queries? By measuring them?

-

\ (classical) RO J

What about our Random Oracle proof?

e ‘See how A ticks’?

e.g., seeing plaintext m belonging to

ng in A’s queries

behavior?

m now "hides’ in superpositions (linear combinations)

A [T V) + apor mInot m)|ynoe m)
How to extract m from the queries? By measuring them?

Wouldn‘t that change (‘collapse’) them and thereby A’s

Can we still extract interesting queries,
without derailing A too much?

4 h

K (classical) RO /

What about our Random Oracle proof?

e ‘See how A ticks’?

e.g., seeing plaintext m belonging to EmF in A’s queries

‘Random-until-queried’ formalised via quantum query extractor

[Unruh 14 + follow-ups]

Caveat: loss in security parameters (minimal loss still tbd)
— proofs so far only apply to less efficient schemes

[Unruh 14]: Revocable quantum timed-release encryption.
[Ambainis Hamburg Unruh 18]: Quantum security proofs using semi-classical oracles.

[Bindel Hamburg Hovelmanns Hiilsing Persichetti 19]: Tighter proofs of CCA security in the QROM.

Coe)

\ (classical) RO J

[Kuchta Sakzad Stehlé Steinfeld Sun 20]: Measure-rewind-measure: Tighter QROM proofs for one-way to hiding and CCA security.

CCA means dealing with decryption failures

Many post-quantum (e.g. LWE-based) schemes occasionally exhibit decryption errors:

Decrypt(Encrypt(m)) +m

Failure secret-key-dependent AREWE THEREYET?
—> leakage on secret key [D’Anvers 18 + follow-ups] -

Original solution ([HHK17]): Assume worst-case bound ¢ on failure probability

— hard for attacker to find failing ciphertexts in the first place.

[D’Anvers Vercauteren Verbauwhede 18]: On the impact of decryption failures on the security of LWE/LWR based schemes
[Bindel Schanck 20]: Decryption failure is more likely after success

[D’Anvers Rossi Virdia 20]: (One) failure is not an option: Bootstrapping the search for failures in lattice-based encryption schemes

CCA means dealing with decryption failures

Many post-quantum (e.g. LWE-based) schemes occasionally exhibit decryption errors:

Decrypt(Encrypt(m)) +m

Failure secret-key-dependent AREWE THEREYET?
—> leakage on secret key [D’Anvers 18 + follow-ups] -

Original solution ([HHK17]): Assume worst-case bound ¢ on failure probability

— hard for attacker to find failing ciphertexts in the first place.

Irritating facts: Applicability issue:
HHK17 gives Grover-like search term: g2 - ¢ Concrete € — estimations 4 security proofs

£ is a somewhat ‘unnatural’ bound

€ - estimations vs security proofs

£ A success probability in / Necessary?

Correctness game

(pk,sk) Attacker

m

¢ + Enc(pk, m)
return [Dec(sk, ¢) = m]

€ - estimations vs security proofs

£ A success probability in / Necessary?
Correctness game WM Attacker
VAR N
™m
¢ + Enc(pk, m))

return [Dec(sk, ¢) = m]

Y observed by Manuel Barbosa
while formally verifying Kyber

g-estimator scripts: Applicability issue

estimate = success probability in game without sk Concrete € — estimations 4

security proofs

Improving the treatment of decryption failures

[HHM 22]: Assume more natural bound (sk-less failure finding = estimator-script-compatible ©)

How?
e Classical ROM:
1. helpful decryption query = adversary found failing plaintext (without knowing sk)

2. analyse failure finding in more fine-grained way

* Quantum:
1. more sophisticated (‘extractable’) QROM [DFMS21] allows ‘almost-classical’ reasoning for 1.

2. search bounds for 2.
3. prove ‘random-until-queried’” argument for extractable QROM

Additional advantage: proof technique agnostic to rejection type
— Aligns the two (previously unaligned) rejection methods in terms of QROM bounds

[Hovelmanns Hulsing Majenz 22]: Failing Gracefully: Decryption Failures and the Fujisaki-Okamoto Transform

[Don Fehr Majenz Schaffner 21]: Online-extractability in the qguantum random-oracle model.

Improving the treatment of decryption failures

[HHM 22]: Assume more natural bound (sk-less failure finding = estimator-script-compatible ©)

How?
e Classical ROM:
1. helpful decryption query = adversary found failing plaintext (without knowing sk)

2. analyse failure finding in more fine-grained way

* Quantum:
1. more sophisticated (‘extractable’) QROM [DFMS21] allows ‘almost-classical’ reasoning for 1.

2. search bounds for 2.
3. prove ‘random-until-queried’” argument for extractable QROM

Additional advantage: proof technique agnostic to rejection type
— Aligns the two (previously unaligned) rejection methods in terms of QROM bounds

(maybe) disadvantage: new analysis tasks, designers might be fine with € - heuristic.

Improving the treatment of decryption failures

[HHM 22]: Assume more natural bound (sk-less failure finding > estimator-script-compatible ©)

Advantage: proof technique agnostic to rejection type

— Aligns the two (previously unaligned) rejection methods in terms of QROM bounds

(maybe) disadvantage: new analysis tasks, designers might be fine with & - heuristic.

[HM 23]: reconcile ‘rejection method alignment’ with & — heuristic

[Hovelmanns Majenz 23]: A note on failing gracefully: Completing the picture for explicitly rejecting FO transforms using worst-case correctness

Cheaper security for NTRU-based schemes

It’s not good if attackers can easily trigger decryption failures.
(Efficient) NTRU-based schemes: failures not generally independent of plaintext at

hand — leverage for the attacker!

AREWETHEREYET?

High-level idea: Pre-transformations that

e detach decryption failure likelihood from the concrete
plaintext (‘average-case- to worst-case-correctness’);

* without giving up efficiency.

— hard for attacker to trigger decryption failures
— more efficient NTRU-based designs.

[Duman Hovelmanns Kiltz Lyubashevsky Seiler Unruh 21]: A Thorough Treatment of Highly-Efficient NTRU Instantiations

Security against multi-user attacks

Limitation so far: in practice, many users will use this KEM
—> we want to ensure that collected info on Bob does not help with attacking Carol

High-level idea: Use domain separation to bind Bob’s identity (AREWETHEREYET?
(a prefix pref of the public key pk) to .
 how we define validity of a ciphertext:

use Hash'(pref, m) as encryption randomness
* how the symmetric key is computed:

Ksym == Hash(pref,m)

— hard for attacker to exploit information related to Bob to attack Carol.

[Duman Hoévelmanns Kiltz Lyubashevsky Seiler 21]: Faster lattice-based KEMs via a generic Fujisaki-Okamoto transform using prefix hashing.

Thanks for listening!

Fujisaki-Okamoto = ‘PKE-to-KEM cooking recipe’:

 How to use public-key encryption to securely
transmit symmetric keys.

* Underpins all NIST proposals for KEMs

ROM heuristic:
* Helps prevent design flaws.

e Post-quantum (QROM) tools for almost-
classical reasoning are emerging, but

e usually at a loss in efficiency.

Qs I’'m interested about:

FO alternatives
* without re-encrypting?
* without resorting to the ROM?

Best way to ‘punish’ malicious
ciphertexts? (implicit vs explicit reject)

FO-KEM security in the real world
(e.g., side-channels)

How to plug FO-KEMs into
bigger/more complex protocols

QROM: improving tool efficiency

Proof technique: extractable QROM

Idea: ROM-like reduction via preimage extraction In FO proof:
QROM 0: X — Y via compressed oracle (Zhal9) O = Hashyyng: M - R
+ interface Extracts for f: X XY > T f = Encrypt M XR - C
Extract(t): Extracts(c) = ‘preimage’ m
Collapse oracle database such that ‘Surprising’ & PKE soreadness
« foronex, f(x,y) = tforall ythatare PIISING = P

in the database superposition for x
Return x

Extracty commutes nicely with O-operations for sufficiently surprising f.

Compressed oracle (Zhal9)

* Oracle database initalised to D ‘= Qxequery domain 1%, L >p,
* Process queries |x,y > by applying

* Fp_tooutputregister of D,

(uniform superposition, Y >=1
Fp | >:= 5 1, |y > = uniform superposition
\ Y >, |y > orthogonal to 1,uniform

. CNOTgf’C:Y to D,., query output register Y

* Fp_tooutputregister of D,

	Slide 1: Fujisaki-Okamoto - a recipe for post-quantum public key encryption
	Slide 2: About me
	Slide 3: Did you use any cryptography today?
	Slide 4: Quantum computers vs crypto
	Slide 5
	Slide 6: Public-key encryption (PKE)
	Slide 7: Public-key encryption (PKE)
	Slide 8: Public-key encryption (PKE)
	Slide 9: Public-key encryption (PKE)
	Slide 10: Public-key encryption (PKE)
	Slide 11: Public-key encryption (PKE)
	Slide 12: Public-key encryption (PKE)
	Slide 13: Public-key encryption (PKE)
	Slide 14: Public-key encryption (PKE)
	Slide 15: Public-key encryption (PKE)
	Slide 16: IND-CPA security game
	Slide 17: IND-CPA security game
	Slide 18: Chosen-ciphertext attacks
	Slide 19: Chosen-ciphertext attacks
	Slide 20: Chosen-ciphertext attacks
	Slide 21: IND-CCA security game
	Slide 22: IND-CCA security game
	Slide 23: Back to sharing symmetric keys
	Slide 24: Key Encapsulation Mechanisms (KEMs)
	Slide 25: KEMs: Security definition
	Slide 26: Indistinguishability games for KEMs
	Slide 27: Indistinguishability games for KEMs
	Slide 28: KEMs in the NIST standardization process
	Slide 29: Fujisaki-Okamoto KEMs: initial idea
	Slide 30: Fujisaki-Okamoto KEMs: initial idea
	Slide 31: Fujisaki-Okamoto KEMs: initial idea
	Slide 32: Fujisaki-Okamoto KEMs: initial idea
	Slide 33: Fujisaki-Okamoto KEMs: initial idea
	Slide 34: Fujisaki-Okamoto KEMs: initial idea
	Slide 35: Interlude: the Provable Security paradigm
	Slide 36: Security ‘proofs’
	Slide 37: Security ‘proofs’
	Slide 38: Security ‘proofs’
	Slide 39: Security ‘proofs’: FO example
	Slide 40: Security ‘proofs’: FO example
	Slide 41: We’ll use the random oracle model (ROM)
	Slide 42: We’ll use the random oracle model (ROM)
	Slide 43: Perks of the random oracle model
	Slide 44: Security argument for FO, using the ROM
	Slide 45: Security argument for FO, using the ROM
	Slide 46: Security argument for FO, using the ROM
	Slide 47: The ROM heuristic seems weird.
	Slide 48: Recap: initial idea
	Slide 49: Security against chosen-ciphertext attacks
	Slide 50: ‘Full’ FO
	Slide 51: ‘Full’ FO
	Slide 52: ‘Full’ FO
	Slide 53: ‘Full’ FO
	Slide 54: ‘Full’ FO
	Slide 55: Adapting security proofs to quantum attackers
	Slide 56: Quantum bits
	Slide 57: Quantum bits
	Slide 58: Quantum bits
	Slide 59: Quantum bits
	Slide 60: Measuring quantum bits
	Slide 61: Quantum bitstrings (qubit strings)
	Slide 62: Computing on quantum states
	Slide 63: Quantum-accessible random oracles (QROs)
	Slide 64: What about our Random Oracle proof?
	Slide 65: What about our Random Oracle proof?
	Slide 66: What about our Random Oracle proof?
	Slide 67: CCA means dealing with decryption failures
	Slide 68: CCA means dealing with decryption failures
	Slide 69: script epsilon - estimations vs security proofs
	Slide 70: script epsilon - estimations vs security proofs
	Slide 71: Improving the treatment of decryption failures
	Slide 72: Improving the treatment of decryption failures
	Slide 73: Improving the treatment of decryption failures
	Slide 74: Cheaper security for NTRU-based schemes
	Slide 75: Security against multi-user attacks
	Slide 76: Thanks for listening!
	Slide 77: Proof technique: extractable QROM
	Slide 78: Compressed oracle (Zha19)

