
Fujisaki-Okamoto - a recipe for
post-quantum public key

encryption

CrySP Speaker Series on Privacy

Kathrin Hövelmanns

April 3rd, 2024, University of Waterloo

About me

… postdoc, then faculty (Sep
’22) at TUEe, NL

Studied Math in Essen, GER… … PhD on Crypto (Dec ‘20) in
Bochum, still GER …

Did you use any cryptography today?

Amazon uses https → https invokes TLS → TLS uses crypto

TLS is everywhere:

 shopping, banking, Netflix, gmail, Facebook, ...

Quantum computers vs crypto

Major investments (est.: $35.5 billion*)

Why care about solutions today?

‘Store now, exploit later’

* World Economic Forum, Insight report, September ‘22

‘The standards are coming anyways’ ☺

https://www.google.com/imgres?imgurl=https%3A%2F%2Fquantum-internet.team%2Fwp-content%2Fuploads%2Fsites%2F3%2F2022%2F08%2FQDNL_Logo-e1661266202751.png%3Ft%3D1661266202&tbnid=5CCY5pGUjFtgCM&vet=12ahUKEwjxoYento7_AhWa_rsIHcM8Dt0QMygCegUIARCzAQ..i&imgrefurl=https%3A%2F%2Fquantum-internet.team%2Fqdnl%2F&docid=HhqLGqhmeslGrM&w=177&h=140&q=quantum%20delta&client=firefox-b-d&ved=2ahUKEwjxoYento7_AhWa_rsIHcM8Dt0QMygCegUIARCzAQ

Secret-key crypto: quantum impact does not seem to be catastrophic -

but how to share secret keys ad hoc?

Public-key encryption (PKE)

Image source: xkcd.com

I should tell Bob
to sell!

Public-key encryption (PKE)

Image source: xkcd.com

I should tell Bob
to sell!

Public-key encryption (PKE)

Image source: xkcd.com

I should tell Bob
to sell!

Public-key encryption (PKE)

Image source: xkcd.com

Public-key encryption (PKE)

Sell!

Image source: xkcd.com

Public-key encryption (PKE)

Image source: xkcd.com

Public-key encryption (PKE)

Sell!

Image source: xkcd.com

Public-key encryption (PKE)
What is Bob

up to?

Image source: xkcd.com

Public-key encryption (PKE)
What is Bob

up to?

Image source: xkcd.com

Obvious goal: without the secret key, encryptions should be hard to invert.

Public-key encryption (PKE)

„Sell“??
„Hold“??

Image source: xkcd.com

Sell!

Obvious goal 2: encryptions should not leak significant info about their plaintexts.

IND-CPA security game
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

Question: Can we have IND-CPA security if encryption is deterministic*?

Left game Right game

Adversary gets public key
Adversary chooses two messages 𝑚1 and 𝑚2

Adversary gets encryption of:

𝑚1 𝑚2

Adversary guesses which game it’s playing

INDistinguishability under Chosen-Plaintext Attacks

* = encrypting a message always
gives the same result

IND-CPA security game
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary chooses two messages 𝑚1 and 𝑚2

Adversary gets encryption of:

𝑚1 𝑚2

Adversary guesses which game it’s playing

Question: Can we have IND-CPA security if encryption is deterministic*?

INDistinguishability under Chosen-Plaintext Attacks

No. (But encryption could still be hard to invert.)
* = encrypting a message always
gives the same result

Chosen-ciphertext attacks
Maybe I can trick
Bob‘s notebook…

Image source: xkcd.com

Chosen-ciphertext attacks
Maybe I can trick
Bob‘s notebook…

Image source: xkcd.com

Chosen-ciphertext attacks
„Sell“!

Image source: xkcd.com

[Bleichenbacher 98]

Left game Right game

Adversary gets public key
Adversary chooses two messages 𝑚1 and 𝑚2

Adversary gets encryption of:

𝑚1 𝑚2

Adversary guesses which game it’s playing

IND-CCA security game
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

INDistinguishability under Chosen-Ciphertext Attacks.

Difference to IND-CPA: Adversary can additionally request decryptions for any
ciphertext is chooses…

Wait, can’t this always be won?

IND-CCA security game
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

Difference to IND-CPA: Adversary can additionally request decryptions for any
ciphertext is chooses… except the provided encryption of 𝑚1/𝑚2

Left game Right game

Adversary gets public key
Adversary chooses two messages 𝑚1 and 𝑚2

Adversary gets encryption of:

𝑚1 𝑚2

Adversary guesses which game it’s playing

INDistinguishability under Chosen-Ciphertext Attacks.

Back to sharing symmetric keys

Goal: Find a public-key method to securely establish symmetric keys 𝐾𝑠𝑦𝑚.

(Why not just use PKE to send encrypted messages? Efficiency.)

Such a method is called a Key Encapsulation Mechanism (KEM).

→ KEMs are what NIST is looking for!

Bob‘s
secret key

Bob‘s
public key

Image source: xkcd.com

Key Encapsulation Mechanisms (KEMs)

A KEM consists of 3 Algorithms:

1. KeyGen: Outputs a public/secret key pair 𝑝𝑘, 𝑠𝑘 (like in public-key encryption)

2. Encapsulate(𝑝𝑘): Use 𝑝𝑘 to create 𝐾𝑠𝑦𝑚 and ciphertext 𝑐 that ‘encrypts’ 𝐾𝑠𝑦𝑚

3. Decapsulate(𝑠𝑘, 𝑐): Use 𝑠𝑘 to recreate (‘decrypt’) 𝐾𝑠𝑦𝑚 from 𝑐

Bob‘s
secret key

Bob‘s
public key

𝐾𝑠𝑦𝑚
𝑐 =

Image source: xkcd.com

KEMs: Security definition

A ciphertext 𝑐 shouldn‘t leak substantial information about 𝐾𝑠𝑦𝑚.

Bob‘s
secret key

Bob‘s
public key

𝐾𝑠𝑦𝑚
𝑐 =

What is Bob
up to?

Image source: xkcd.com

Indistinguishability games for KEMs

Image source: xkcd.com

IND-CPA-KEM security: INDistinguishability for KEMs.

What is Bob
up to?

Left game Right game

Adversary gets public key
Adversary gets ciphertext 𝑐 that ‘encrypts’ a symmetric key 𝐾𝑠𝑦𝑚, together with

The 𝐾𝑠𝑦𝑚 that belongs to 𝑐 A uniformly random 𝐾𝑠𝑦𝑚

Adversary guesses which game it’s playing

Indistinguishability games for KEMs

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary gets ciphertext 𝑐 that ‘encrypts’ a symmetric key 𝐾𝑠𝑦𝑚, together with

The 𝐾𝑠𝑦𝑚 that belongs to 𝑐 A uniformly random 𝐾𝑠𝑦𝑚

Adversary guesses which game it’s playing

IND-CCA-KEM security: INDistinguishability for KEMs under Chosen-

Ciphertext Attacks.

What is Bob
up to?

Difference to IND-CPA: Adversary can additionally request decryptions for any
ciphertext is chooses… except the provided ‘challenge’ ciphertext 𝑐.

KEMs in the NIST standardization process

Bob‘s
secret key

Bob‘s
public key

𝐾𝑠𝑦𝑚

Fujisaki-Okamoto (FO): ‘generic’ encryption-to-key-encapsulation recipe

•

• = LWE encryption, plugged into FO

Shared approach: PKE from hardness assumption + Fujisaki-Okamoto ‘recipe’

= moduleLWE encryption, plugged into FO

Fujisaki-Okamoto KEMs: initial idea

Image source: xkcd.com

Breaking one-wayness:

A must invert .𝑚

Bob‘s
secret key

Bob‘s
public key

A

Goal: Find a public-key method to securely establish symmetric keys 𝐾𝑠𝑦𝑚.

You may use a public-key encryption scheme that is one-way secure.

𝑚

[Hofheinz Hövelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Encrypt 𝑚:
Pick random message 𝑚

𝑚

Fujisaki-Okamoto KEMs: initial idea

Image source: xkcd.com

𝑚

Bob‘s
secret key

Bob‘s
public key

Decrypt
𝑚

Set 𝐾𝑠𝑦𝑚 ≔ ? ? ?

Goal: Find a public-key method to securely establish symmetric keys 𝐾𝑠𝑦𝑚.

You may use a public-key encryption scheme that is one-way secure.

[Hofheinz Hövelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea

𝑚

Image source: xkcd.com

Decrypt
𝑚

Set 𝐾𝑠𝑦𝑚 ≔ ? ? ?

𝑚

Bob‘s
secret key

Bob‘s
public key

What should Alice and
Bob pick as 𝐾𝑠𝑦𝑚?

Maybe 𝐾𝑠𝑦𝑚 ≔ 𝑚?
Set 𝐾𝑠𝑦𝑚 ≔ ? ? ?

Goal: Find a public-key method to securely establish symmetric keys 𝐾𝑠𝑦𝑚.

You may use a public-key encryption scheme that is one-way secure.

[Hofheinz Hövelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Goal: Find a public-key method to securely establish symmetric keys 𝐾𝑠𝑦𝑚.

You may use a public-key encryption scheme that is one-way secure.

Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea

𝑚

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ ? ? ?

𝑚

Bob‘s
secret key

Bob‘s
public key

What should Alice and
Bob pick as 𝐾𝑠𝑦𝑚?

Maybe 𝐾𝑠𝑦𝑚 ≔ 𝑚?
Set 𝐾𝑠𝑦𝑚 ≔ ? ? ?

Breaking the KEM:

Seeing an encryption of 𝑚,
𝑨’s task is to tell 𝐾𝑠𝑦𝑚 = 𝑚

apart from random.

‘real’ /
’random’

𝑨

[Hofheinz Hövelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea

𝑚

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Find a public-key method to securely establish symmetric keys 𝐾𝑠𝑦𝑚.

You may use a public-key encryption scheme and a hash function.

[Hofheinz Hövelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea

𝑚

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Find a public-key method to securely establish symmetric keys 𝐾𝑠𝑦𝑚.

You may use a public-key encryption scheme and a hash function.

Q: Is this secure?

Goal:

Show that 𝑨 has 0 chance breaking
the KEM without inverting
encryption.

Breaking the KEM:

Seeing an encryption of 𝑚,
𝑨’s task is to tell 𝐾𝑠𝑦𝑚 =

Hash(𝑚) apart from random.

‘real’ /
’random’

𝑨

[Hofheinz Hövelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Interlude: the Provable Security paradigm

• Cryptographic design

• Security model (‘game’)

• Security ‘proof’

Why formal models? To
avoid ambiguity.

Breaking the KEM:

Seeing an encryption of 𝑚,
𝑨’s task is to tell 𝐾𝑠𝑦𝑚 =

Hash(𝑚) apart from random.

‘real’ /
’random’

𝑨

Security ‘proofs’

Security
game G

A

X-instance

break

Proof approach:

• Imagine (black-box) attacker A, breaking X according to security game G (e.g.,
distinguishing KEM output keys from random)

Intuition: ‘If it’s hard to solve problem P, then design X is secure’

e.g. inverting encryptions e.g. Fujisaki-Okamoto KEM

Security ‘proofs’

A

Reduction B

P-instance

Solution for P-instance

X-instance

break

Use P-instance
to simulate security

game G

Proof approach:

• Imagine (black-box) attacker A, breaking X according to security game G (e.g.,
distinguishing KEM output keys from random)

• Construct reduction B that uses A to solve problem P

Intuition: ‘If it’s hard to solve problem P, then design X is secure’

e.g. inverting encryptions e.g. Fujisaki-Okamoto KEM

Security ‘proofs’

A

Reduction B

P-instance

Solution for P-instance

X-instance

break

Use P-instance
to simulate security

game G

Proof approach:

• Imagine (black-box) attacker A, breaking X according to security game G (e.g.,
distinguishing KEM output keys from random)

• Construct reduction B that uses A to solve problem P

Intuition: ‘If it’s hard to solve problem P, then design X is secure’

e.g. inverting encryptions e.g. Fujisaki-Okamoto KEM

Security ‘proofs’: FO example

A

Reduction B

𝑝𝑘, 𝑐 = encryption of 𝑚

𝑚 = ? ‘left’/’right’

Proof approach:

• Imagine (black-box) attacker A, distinguishing KEM output keys from random

• Construct reduction B that uses A to invert encryptions

Intuition: ‘If it’s hard to invert encryptions, then the Fujisaki-Okamoto KEM is secure’

𝑝𝑘, 𝑐, 𝑲𝒔𝒚𝒎 =?

Security ‘proofs’: FO example

A

Reduction B

𝑝𝑘, 𝑐 = encryption of 𝑚

𝑚 = ? ‘left’/’right’

Proof approach:

• Imagine (black-box) attacker A, distinguishing KEM output keys from random

• Construct reduction B that uses A to invert encryptions

Intuition: ‘If it’s hard to invert encryptions, then the Fujisaki-Okamoto KEM is secure’

𝑝𝑘, 𝑐, 𝑲𝒔𝒚𝒎 =?

Qs:
How can B simulate 𝑲𝒔𝒚𝒎?

How does B invert 𝒄?

break

We’ll use the random oracle model (ROM)

Security
game G

for design X

A

X-instance

Oracle for 𝑓

𝑥 𝑦

Heuristic: Replace hash function

Hash: 0,1 𝑛 → 0,1 𝑚

with ‘oracle box’ for truly random

𝑓: 0,1 𝑛 → 0,1 𝑚

𝑥

𝑦

We’ll use the random oracle model (ROM)

P-instance

Solution for P-instance

Heuristic: Replace hash function

Hash: 0,1 𝑛 → 0,1 𝑚

with ‘oracle box’ for truly random

𝑓: 0,1 𝑛 → 0,1 𝑚

A

𝑥 𝑦

A

Reduction B
Oracle for 𝑓

Use problem
instance

to simulate
security game break

X-instance

Perks of the random oracle model

• Unpredictability of 𝑓 𝑥 without asking

oracle for 𝑓 𝑥

 (e.g., 𝑲𝒔𝒚𝒎 ≔ 𝑓 𝑚)

• Picking the 𝑦s smartly enough, B can

a) trick A into solving B’s problem

b) feign secret knowledge it would - in

principle - need for A’s security game

P-instance

Solution for P-instance A

𝑥 𝑦

A

Reduction B
Oracle for 𝑓

Use problem
instance

to simulate
security game break

X-instance

Security argument for FO, using the ROM

𝑝𝑘, 𝑐

𝑚 = ? A

𝑚 𝑘

A

Reduction B
Oracle for 𝑓

Use PKE
instance

to simulate
KEM game break

𝑝𝑘, 𝑐, 𝑲𝒔𝒚𝒎 = ?

Intuition: ‘If it’s hard to invert encryptions, then
the Fujisaki-Okamoto KEM is secure’ Qs:

How can B simulate 𝑲𝒔𝒚𝒎?

How does B invert 𝒄?

• Unpredictability → A has 0 chance telling

𝑲𝒔𝒚𝒎 ≔ 𝑓 𝑚 from $ (random) unless it queries

oracle f on the plaintext 𝑚 that belongs to 𝑐

Security argument for FO, using the ROM

𝑝𝑘, 𝑐

𝑚 = ? AA

Reduction B
Oracle for 𝑓

Use PKE
instance

to simulate
KEM game break

𝑝𝑘, 𝑐, 𝑲𝒔𝒚𝒎 = $

Intuition: ‘If it’s hard to invert encryptions, then
the Fujisaki-Okamoto KEM is secure’ Qs:

✓ How can B simulate 𝑲𝒔𝒚𝒎?

How does B invert 𝒄?

Pr 𝐴 breaks 𝐾𝑠𝑦𝑚 ≤ Pr 𝐴 queries f on 𝑚
≤ 𝑞 ⋅ Pr B can invert 𝑐

𝑚 𝑘

• Unpredictability → A has 0 chance telling

𝑲𝒔𝒚𝒎 ≔ 𝑓 𝑚 from $ (random) unless it queries

oracle f on the plaintext 𝑚 that belongs to 𝑐

• But then B sees 𝑚 (it still needs to guess in which

of the 𝑞 many RO queries though)

Security argument for FO, using the ROM

𝑝𝑘, 𝑐

𝑚 AA

Reduction B
Oracle for 𝑓

Use PKE
instance

to simulate
KEM game break

𝑝𝑘, 𝑐, 𝑲𝒔𝒚𝒎 = $

Intuition: ‘If it’s hard to invert encryptions, then
the Fujisaki-Okamoto KEM is secure’ Qs:

✓ How can B simulate 𝑲𝒔𝒚𝒎?

✓ How does B invert 𝒄?

Pr 𝐴 breaks 𝐾𝑠𝑦𝑚 ≤ Pr 𝐴 queries f on 𝑚
≤ 𝑞 ⋅ Pr B can invert 𝑐

𝑚 𝑘

The ROM heuristic seems weird.

 No theoretical justification

Counterexamples: (convoluted) designs that are

• secure in the ROM, but

• insecure when instantiating RO with any hash function

 Good track record for ‘natural’ schemes

 Helps identify design bugs

 Attacks on ‘ROM-secure’ schemes would be kind of surprising

Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Recap: initial idea

𝑚

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Find a public-key method to securely establish symmetric keys 𝐾𝑠𝑦𝑚.

You may use a public-key encryption scheme and a hash function.

[Hofheinz Hövelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

Security against chosen-ciphertext attacks

Goal: Find a way to establish symmetric keys 𝐾𝑠𝑦𝑚 with chosen-ciphertext security.

→ attacker allowed to request decapsulation for any ciphertext.

High-level idea: alter how the KEM en-/decapsulates:

Altered decapsulation will

• detect dishonest ciphertexts

• punish those by rejecting to return a meaningful key.

→ hard for attacker to request useful decapsulations

Image source: xkcd.com

Encrypt 𝑚, deterministically

Pick random message 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Instead of randomly sampling
encryption randomness 𝑟:

Use 𝑟 = Hash′(𝑚)

‘Full’ FO

Goal: Make decryptions useless for A!

Decrypt 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Only if 𝑚 encrypts to :𝑚

Otherwise, reject!

‘Full’ FO

Image source: xkcd.com

Encrypt 𝑚, deterministically

Pick random message 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Using Hash′(𝑚) as randomness

Goal: Make decryptions useless for A!

Decrypt 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Only if 𝑚 encrypts to :𝑚

Otherwise, reject!

‘Full’ FO

Goal: Make decryptions useless for A!

Image source: xkcd.com

Encrypt 𝑚, deterministically

Pick random message 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Using Hash′(𝑚) as randomness

The key for

is Hash(𝑚′)! 𝑚′

Decrypt 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Only if 𝑚 encrypts to :𝑚

Otherwise, reject!

‘Full’ FO

Image source: xkcd.com

Encrypt 𝑚, deterministically

Pick random message 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

so, why do we do this?This creates side-channel
vulnerabilities.

(smarter ‘works-always’
solutions are elusive so far )

Goal: Make decryptions useless for A!

Decrypt 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Only if 𝑚 encrypts to :𝑚

Otherwise, reject!

‘Full’ FO

Goal: Make decryptions useless for A!

Image source: xkcd.com

Encrypt 𝑚, deterministically

Pick random message 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

so, why do we do this?Not as critical, but still subject to debate:

Which rejection method is better?

• returning explicit failure symbol ⊥?
• returning pseudorandom key?

Adapting security proofs to quantum attackers

• ‘Online’ functionality (decryption, signing, ...) stays classical

• ‘Offline’ functionality computable by quantum attacker

Random oracle model: Hash functions can be computed offline

 → Quantum access to random oracles!

Quantum bits

0

1

0

1

Classical bit Quantum bit

Quantum bits

0

1

0

1

Classical bit Quantum bit
Notation:
• 0 for ‚truly 0‘

Quantum bits

0

1

0

1

Classical bit Quantum bit
Notation:
• 0 for ‚truly 0‘
• 1 for ‚truly 1‘

ൟ ‘base states’

Quantum bits

0

1

0

1

Classical bit Quantum bit

‘Superposition’
of 0 and 1

Notation:
• 0 for ‚truly 0‘
• 1 for ‚truly 1‘

‘Non- base states’:

• 𝛼0 0 + 𝛼1 1 for complex numbers 𝛼0, 𝛼1

• Requirement on (𝛼0, 𝛼1):

𝛼0
2

+ 𝛼1
2

= 1

Example: uniform (‚half-half‘) state
1

√2
0 +

1

2
1

ൟ ‘base states’

with probability 𝛼0
2

with probability 𝛼1
2

What happens?

Measuring quantum bits

0

1

Classical bitQuantum bit

What happens?

𝛼0 0 + 𝛼1 1 ‘collapses’ to ቊ
0
1

Quantum bitstrings (qubit strings)

Same principle: Put all possible bitstrings of length ℓ into superposition

E.g., for length 2:

• qubit strings are of the form 𝛼00 00 + 𝛼01 01 + 𝛼10 10 + 𝛼11 11

• similar requirement on ‘probability coefficients’ 𝛼00, ⋯ , 𝛼11:

Measuring:

𝛼00 00 + 𝛼01 01 + 𝛼10 10 + 𝛼11 11 collapses to ‘00‘ with prob. 𝛼00
2
etc.

𝛼00
2

+ 𝛼01
2

+ 𝛼10
2

+ 𝛼11

2
= 1lap

Computing on quantum states

Fact: Any quantum computation can be described by a ‘nicely-invertible’ map U.

Example: a map for strings of length 2

00 → 00
01 → 01
10 → 11
11 → 10

𝑏, 𝑏′ → 𝑏, 𝑏′ ⊕ 𝑏 𝑏

|𝑏′⟩
𝐶𝑁𝑂𝑇

|𝑏′ ⊕ 𝑏⟩

𝑏

Gate description:

Random oracles: How to describe them in a ‘nicely-invertible’ way?

Quantum-accessible random oracles (QROs)

[Boneh Dagdelen Fischlin Lehmann Schaffner Zhandry 11]

Model the QRO as oracle box O𝑓 for random function 𝑓: 𝑋 → 𝑌 as follows:

𝑥 𝑋

𝑦 𝑌
O𝑓 𝑦 ⊕ 𝑓 𝑥 𝑌

𝑥 𝑋

So for any classical input value 𝑥,

𝑥 0 ⋯ 0 → 𝑥 𝑓(𝑥) .

(O𝑓 simply carries over the probability coefficients)

What about our Random Oracle proof?

• ‘See how A ticks’?

e.g., seeing plaintext 𝑚 belonging to in A’s queries𝑚

𝑚

A

𝐾

𝐾 ←$ 0,1 𝑛

(classical) RO

𝑚 now ’hides’ in superpositions (linear combinations)

How to extract 𝑚 from the queries? By measuring them?

𝛼𝑚 𝑚 𝑦𝑚 + 𝛼𝑛𝑜𝑡 𝑚 𝑛𝑜𝑡 𝑚 𝑦𝑛𝑜𝑡 𝑚

What about our Random Oracle proof?

• ‘See how A ticks’?

e.g., seeing plaintext 𝑚 belonging to in A’s queries𝑚

𝑚

A

𝐾

𝐾 ←$ 0,1 𝑛

(classical) RO

𝑚 now ’hides’ in superpositions (linear combinations)

How to extract 𝑚 from the queries? By measuring them?

Can we still extract interesting queries,
without derailing A too much?

Wouldn‘t that change (‘collapse’) them and thereby A’s
behavior?

𝛼𝑚 𝑚 𝑦𝑚 + 𝛼𝑛𝑜𝑡 𝑚 𝑛𝑜𝑡 𝑚 𝑦𝑛𝑜𝑡 𝑚

What about our Random Oracle proof?

• ‘See how A ticks’?

e.g., seeing plaintext 𝑚 belonging to in A’s queries𝑚

𝑚

A

𝐾

𝐾 ←$ 0,1 𝑛

(classical) RO

[Unruh 14]: Revocable quantum timed-release encryption.

[Ambainis Hamburg Unruh 18]: Quantum security proofs using semi-classical oracles.

[Bindel Hamburg Hövelmanns Hülsing Persichetti 19]: Tighter proofs of CCA security in the QROM.

[Kuchta Sakzad Stehlé Steinfeld Sun 20]: Measure-rewind-measure: Tighter QROM proofs for one-way to hiding and CCA security.

[Unruh 14 + follow-ups]

‘Random-until-queried’ formalised via quantum query extractor

Caveat: loss in security parameters (minimal loss still tbd)

→ proofs so far only apply to less efficient schemes

CCA means dealing with decryption failures

Many post-quantum (e.g. LWE-based) schemes occasionally exhibit decryption errors:

Failure secret-key-dependent

 → leakage on secret key [D’Anvers 18 + follow-ups]

𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑚 ≠ 𝑚

[D’Anvers Vercauteren Verbauwhede 18]: On the impact of decryption failures on the security of LWE/LWR based schemes

[Bindel Schanck 20]: Decryption failure is more likely after success

[D’Anvers Rossi Virdia 20]: (One) failure is not an option: Bootstrapping the search for failures in lattice-based encryption schemes

Original solution ([HHK17]): Assume worst-case bound 𝜀 on failure probability

→ hard for attacker to find failing ciphertexts in the first place.

CCA means dealing with decryption failures

Many post-quantum (e.g. LWE-based) schemes occasionally exhibit decryption errors:

Failure secret-key-dependent

 → leakage on secret key [D’Anvers 18 + follow-ups]

Original solution ([HHK17]): Assume worst-case bound 𝜀 on failure probability

→ hard for attacker to find failing ciphertexts in the first place.

𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑚 ≠ 𝑚

HHK17 gives Grover-like search term: 𝑞2 ⋅ 𝜀

𝜀 is a somewhat ‘unnatural’ bound

Irritating facts:

Concrete 𝜀 – estimations security proofs

Applicability issue:

𝜀 - estimations vs security proofs

𝜀 ≜ success probability in

AttackerCorrectness game

Necessary?

𝜀 - estimations vs security proofs

Correctness game Attacker

Necessary?

𝜀-estimator scripts:

estimate ≜ success probability in game without sk

observed by Manuel Barbosa
while formally verifying Kyber

Applicability issue

Concrete 𝜀 – estimations
security proofs

𝜀 ≜ success probability in

Improving the treatment of decryption failures

[HHM 22]: Assume more natural bound (sk-less failure finding → estimator-script-compatible ☺)

How?
• Classical ROM:

1. helpful decryption query = adversary found failing plaintext (without knowing sk)
2. analyse failure finding in more fine-grained way

• Quantum:
1. more sophisticated (‘extractable’) QROM [DFMS21] allows ‘almost-classical’ reasoning for 1.
2. search bounds for 2.
3. prove ‘random-until-queried’ argument for extractable QROM

[Hövelmanns Hülsing Majenz 22]: Failing Gracefully: Decryption Failures and the Fujisaki-Okamoto Transform

[Don Fehr Majenz Schaffner 21]: Online-extractability in the quantum random-oracle model.

Additional advantage: proof technique agnostic to rejection type

→ Aligns the two (previously unaligned) rejection methods in terms of QROM bounds

Improving the treatment of decryption failures

Additional advantage: proof technique agnostic to rejection type

→ Aligns the two (previously unaligned) rejection methods in terms of QROM bounds

(maybe) disadvantage: new analysis tasks, designers might be fine with 𝜀 - heuristic.

[HHM 22]: Assume more natural bound (sk-less failure finding → estimator-script-compatible ☺)

How?
• Classical ROM:

1. helpful decryption query = adversary found failing plaintext (without knowing sk)
2. analyse failure finding in more fine-grained way

• Quantum:
1. more sophisticated (‘extractable’) QROM [DFMS21] allows ‘almost-classical’ reasoning for 1.
2. search bounds for 2.
3. prove ‘random-until-queried’ argument for extractable QROM

Improving the treatment of decryption failures

[Hövelmanns Majenz 23]: A note on failing gracefully: Completing the picture for explicitly rejecting FO transforms using worst-case correctness

[HHM 22]: Assume more natural bound (sk-less failure finding → estimator-script-compatible ☺)

Advantage: proof technique agnostic to rejection type

→ Aligns the two (previously unaligned) rejection methods in terms of QROM bounds

(maybe) disadvantage: new analysis tasks, designers might be fine with 𝜀 - heuristic.

[HM 23]: reconcile ‘rejection method alignment’ with 𝜀 – heuristic

Cheaper security for NTRU-based schemes

It’s not good if attackers can easily trigger decryption failures.

(Efficient) NTRU-based schemes: failures not generally independent of plaintext at

hand → leverage for the attacker!

High-level idea: Pre-transformations that

• detach decryption failure likelihood from the concrete

plaintext (‘average-case- to worst-case-correctness’);

• without giving up efficiency.

→ hard for attacker to trigger decryption failures
→ more efficient NTRU-based designs.

[Duman Hövelmanns Kiltz Lyubashevsky Seiler Unruh 21]: A Thorough Treatment of Highly-Efficient NTRU Instantiations

Security against multi-user attacks

Limitation so far: in practice, many users will use this KEM

→ we want to ensure that collected info on Bob does not help with attacking Carol

High-level idea: Use domain separation to bind Bob’s identity

(a prefix 𝑝𝑟𝑒𝑓 of the public key 𝑝𝑘) to

• how we define validity of a ciphertext:

 use Hash′(𝒑𝒓𝒆𝒇, 𝑚) as encryption randomness

• how the symmetric key is computed:

𝐾𝑠𝑦𝑚 ≔ Hash(𝒑𝒓𝒆𝒇, 𝑚)

→ hard for attacker to exploit information related to Bob to attack Carol.

[Duman Hövelmanns Kiltz Lyubashevsky Seiler 21]: Faster lattice-based KEMs via a generic Fujisaki-Okamoto transform using prefix hashing.

ROM heuristic:

• Helps prevent design flaws.

• Post-quantum (QROM) tools for almost-
classical reasoning are emerging, but

• usually at a loss in efficiency.

Fujisaki-Okamoto = ‘PKE-to-KEM cooking recipe’:

• How to use public-key encryption to securely
transmit symmetric keys.

• Underpins all NIST proposals for KEMs

Thanks for listening!
Qs I’m interested about:

• FO alternatives

• without re-encrypting?

• without resorting to the ROM?

• Best way to ‘punish’ malicious
ciphertexts? (implicit vs explicit reject)

• FO-KEM security in the real world
(e.g., side-channels)

• How to plug FO-KEMs into
bigger/more complex protocols

• QROM: improving tool efficiency

QROM 𝑂: 𝑋 → 𝑌 via compressed oracle (Zha19)

+ interface Extract𝑓 for 𝑓: 𝑋 × 𝑌 → 𝑇:

Extract𝑓 t :

Collapse oracle database such that
• for one x, 𝑓 𝑥, 𝑦 = 𝑡 for all 𝑦 that are

in the database superposition for 𝑥
Return 𝑥

Extract𝑓 commutes nicely with 𝑂-operations for sufficiently surprising 𝑓.

Idea: ROM-like reduction via preimage extraction

Proof technique: extractable QROM

In FO proof:

𝑂 = Hashrand: 𝑀 → 𝑅

‘Surprising’ ≜ PKE spreadness

Extract𝑓 c = ‘preimage’ m

𝑓 = Encrypt: 𝑀 × 𝑅 → 𝐶

Compressed oracle (Zha19)

• Oracle database initalised to 𝐷 ≔ ⊗𝑥∈𝑞𝑢𝑒𝑟𝑦 𝑑𝑜𝑚𝑎𝑖𝑛 |𝑥, ⊥ >𝐷𝑥

• Process queries |𝑥, 𝑦 > by applying

• 𝐹𝐷𝑥
 to output register of 𝐷𝑥

 𝐹𝐷𝑥
|𝜓 >≔ ቐ

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑠𝑢𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,
⊥,

|𝜓 >,

|𝜓 >=⊥
|𝜓 > = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑠𝑢𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
|𝜓 > 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑡𝑜 ⊥, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚

• CNOT𝐷𝑥:𝑌
⊗ to 𝐷𝑥, query output register Y

• 𝐹𝐷𝑥
 to output register of 𝐷𝑥

	Slide 1: Fujisaki-Okamoto - a recipe for post-quantum public key encryption
	Slide 2: About me
	Slide 3: Did you use any cryptography today?
	Slide 4: Quantum computers vs crypto
	Slide 5
	Slide 6: Public-key encryption (PKE)
	Slide 7: Public-key encryption (PKE)
	Slide 8: Public-key encryption (PKE)
	Slide 9: Public-key encryption (PKE)
	Slide 10: Public-key encryption (PKE)
	Slide 11: Public-key encryption (PKE)
	Slide 12: Public-key encryption (PKE)
	Slide 13: Public-key encryption (PKE)
	Slide 14: Public-key encryption (PKE)
	Slide 15: Public-key encryption (PKE)
	Slide 16: IND-CPA security game
	Slide 17: IND-CPA security game
	Slide 18: Chosen-ciphertext attacks
	Slide 19: Chosen-ciphertext attacks
	Slide 20: Chosen-ciphertext attacks
	Slide 21: IND-CCA security game
	Slide 22: IND-CCA security game
	Slide 23: Back to sharing symmetric keys
	Slide 24: Key Encapsulation Mechanisms (KEMs)
	Slide 25: KEMs: Security definition
	Slide 26: Indistinguishability games for KEMs
	Slide 27: Indistinguishability games for KEMs
	Slide 28: KEMs in the NIST standardization process
	Slide 29: Fujisaki-Okamoto KEMs: initial idea
	Slide 30: Fujisaki-Okamoto KEMs: initial idea
	Slide 31: Fujisaki-Okamoto KEMs: initial idea
	Slide 32: Fujisaki-Okamoto KEMs: initial idea
	Slide 33: Fujisaki-Okamoto KEMs: initial idea
	Slide 34: Fujisaki-Okamoto KEMs: initial idea
	Slide 35: Interlude: the Provable Security paradigm
	Slide 36: Security ‘proofs’
	Slide 37: Security ‘proofs’
	Slide 38: Security ‘proofs’
	Slide 39: Security ‘proofs’: FO example
	Slide 40: Security ‘proofs’: FO example
	Slide 41: We’ll use the random oracle model (ROM)
	Slide 42: We’ll use the random oracle model (ROM)
	Slide 43: Perks of the random oracle model
	Slide 44: Security argument for FO, using the ROM
	Slide 45: Security argument for FO, using the ROM
	Slide 46: Security argument for FO, using the ROM
	Slide 47: The ROM heuristic seems weird.
	Slide 48: Recap: initial idea
	Slide 49: Security against chosen-ciphertext attacks
	Slide 50: ‘Full’ FO
	Slide 51: ‘Full’ FO
	Slide 52: ‘Full’ FO
	Slide 53: ‘Full’ FO
	Slide 54: ‘Full’ FO
	Slide 55: Adapting security proofs to quantum attackers
	Slide 56: Quantum bits
	Slide 57: Quantum bits
	Slide 58: Quantum bits
	Slide 59: Quantum bits
	Slide 60: Measuring quantum bits
	Slide 61: Quantum bitstrings (qubit strings)
	Slide 62: Computing on quantum states
	Slide 63: Quantum-accessible random oracles (QROs)
	Slide 64: What about our Random Oracle proof?
	Slide 65: What about our Random Oracle proof?
	Slide 66: What about our Random Oracle proof?
	Slide 67: CCA means dealing with decryption failures
	Slide 68: CCA means dealing with decryption failures
	Slide 69: script epsilon - estimations vs security proofs
	Slide 70: script epsilon - estimations vs security proofs
	Slide 71: Improving the treatment of decryption failures
	Slide 72: Improving the treatment of decryption failures
	Slide 73: Improving the treatment of decryption failures
	Slide 74: Cheaper security for NTRU-based schemes
	Slide 75: Security against multi-user attacks
	Slide 76: Thanks for listening!
	Slide 77: Proof technique: extractable QROM
	Slide 78: Compressed oracle (Zha19)

