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Studied Math in Essen, GER... ... PhD on Crypto (Dec 20) in ... postdoc, then faculty (Sep
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Did you use any cryptography today?

=) QSI Spring School — Spring School « X ﬂ Amazon.com. Spend less. Smile X +

< G O E'I amazon.com ﬂ?

Hello, sign in

Deliver to Py
am a;on © Portugal All ¥ | Search Amazon ==EN- Account&

— All Today's Deals Customer Service Registry Gift Cards Sell

Amazon uses https — https invokes TLS — TLS uses crypto

TLS is everywhere:
shopping, banking, Netflix, gmail, Facebook, ...



Quantum computers vs crypto

?

Why care about solutions today?

Major investments (est.: $35.5 billion*)

Quantum Delta Go g Ie S ETE Q : ; J
eeeeeeeee Civpe 0 2

(i@ =. Microsoft OUANTUM

FLAGSHIP

‘Store now, exploit later’

‘The standards are coming anyways’ ©

* World Economic Forum, Insight report, September ‘22


https://www.google.com/imgres?imgurl=https%3A%2F%2Fquantum-internet.team%2Fwp-content%2Fuploads%2Fsites%2F3%2F2022%2F08%2FQDNL_Logo-e1661266202751.png%3Ft%3D1661266202&tbnid=5CCY5pGUjFtgCM&vet=12ahUKEwjxoYento7_AhWa_rsIHcM8Dt0QMygCegUIARCzAQ..i&imgrefurl=https%3A%2F%2Fquantum-internet.team%2Fqdnl%2F&docid=HhqLGqhmeslGrM&w=177&h=140&q=quantum%20delta&client=firefox-b-d&ved=2ahUKEwjxoYento7_AhWa_rsIHcM8Dt0QMygCegUIARCzAQ

Secret-key crypto: quantum impact does not seem to be catastrophic -

but how to share secret keys ad hoc?




Public-key encryption (PKE)

| should tell Bob
to selll
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Image source: xkcd.com
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Public-key encryption (PKE)

| should tell Bob Key server
to selll
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Public-key encryption (PKE)
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Public-key encryption (PKE)

Image source: xkcd.com



Public-key encryption (PKE)

Obvious goal: without the secret key, encryptions should be hard to invert.

Image source: xkcd.com



Public-key encryption (PKE)

Obvious goal 2: encryptions should not leak significant info about their plaintexts.

Image source: xkcd.com



IND-CPA security game

INDistinguishability under Chosen-Plaintext Attacks

,Sell“??
,Hold“??

Left game

Right game

Adversary gets public key (b

Adversary gets encryption of:

Adversary chooses two messages 11, and m,

mq

m;

Adversary guesses which game it’s playing

Question: Can we have IND-CPA security if encryption is deterministic*?

Image source: xkcd.com

* = encrypting a message always
gives the same result



,Sell“??
,Hold“??

IND-CPA security game

INDistinguishability under Chosen-Plaintext Attacks

Left game Right game A

Adversary gets public key (b
Adversary chooses two messages 11, and m,

Adversary gets encryption of:

mq m;

Adversary guesses which game it’s playing

Question: Can we have IND-CPA security if encryption is deterministic*?

* = encrypting a message always

No. (But encryption could still be hard to invert.) gives the same result

Image source: xkcd.com



Maybe | can trick
Bob‘s notebook...

Chosen-ciphertext attacks

Bob

Image source: xkcd.com



Maybe | can trick
Bob‘s notebook...

Chosen-ciphertext attacks

Image source: xkcd.com



Chosen-ciphertext attacks

Chosen Ciphertext Attacks Against Protocols
Based on the RSA Encryption Standard
PKCS #1

Daniel Bleichenbacher

Bell Laboratories
700 Mountain Ave.
Murray Hill, NJ 07974
E-mail: bleichen®research.bell-labs.com

[Bleichenbacher 98]

Bob

Image source: xkcd.com



,Sell“??
,Hold“??

IND-CCA security game

INDistinguishability under Chosen-Ciphertext Attacks. J,,

Left game Right game T

Adversary gets public key Cb
Adversary chooses two messages m, and m,

Adversary gets encryption of:

mq m;

Adversary guesses which game it’s playing

Difference to IND-CPA: Adversary can additionally request decryptions for any
ciphertext is chooses...

Wait, can’t this always be won?

Image source: xkcd.com



,Sell“??
,Hold“??

IND-CCA security game

INDistinguishability under Chosen-Ciphertext Attacks. j,

Adversary gets public key (b
Adversary chooses two messages 11, and m,

Adversary gets encryption of:

mq m;

Adversary guesses which game it’s playing

Difference to IND-CPA: Adversary can additionally request decryptions for any
ciphertext is chooses... except the provided encryption of m,/m,

Image source: xkcd.com

Left game Right game A



Back to sharing symmetric keys

Goal: Find a public-key method to securely establish symmetric keys K, .
(Why not just use PKE to send encrypted messages? Efficiency.)
Such a method is called a Key Encapsulation Mechanism (KEM).

— KEMs are what NIST is looking for!

Bob's %ﬁ o ( Bob's
publlc key | secret key

Alice Bob

Image source: xkcd.com



Key Encapsulation Mechanisms (KEMs)

A KEM consists of 3 Algorithms:

1. KeyGen: Outputs a public/secret key pair pk, sk (like in public-key encryption)
2. Encapsulate(pk): Use pk to create K, and ciphertext c that ‘encrypts’ K.,

3. Decapsulate(sk, c): Use sk to recreate (‘decrypt’) K, from ¢

C = m O
Bobs " Bob’s
publlc key . secret key

Alice Bob

Image source: xkcd.com



What is Bob
up to?

A ciphertext ¢ shouldn‘t leak substantial information about K, . )

KEMs: Security definition

- |\K/m? Q
publlc key secret key
Alice Bob

Image source: xkcd.com



Indistinguishability games for KEMs

IND-CPA-KEM security: INDistinguishability for KEMs.

Left game

Right game

Adversary gets public key %
Adversary gets ciphertext c that ‘encrypts’ a symmetric key K., together with

The Ky, that belongs to ¢

A uniformly random Ksym

Adversary guesses which game it’s playing

Image source: xkcd.com

What is Bob
up to?




What is Bob
up to?

Indistinguishability games for KEMs

IND-CCA-KEM security: INDistinguishability for KEMs under Chosen-
Ciphertext Attacks.

Left game Right game

Adversary gets public key %
Adversary gets ciphertext c that ‘encrypts’ a symmetric key K., together with

The Ky, that belongs to ¢ A uniformly random K.,

Adversary guesses which game it’s playing

Difference to IND-CPA: Adversary can additionally request decryptions for any
ciphertext is chooses... except the provided ‘challenge’ ciphertext c.

Image source: xkcd.com



KEMSs in the NIST standardization process

Shared approach: PKE from hardness assumption + Fujisaki-Okamoto ‘recipe’

Fujisaki-Okamoto (FO): ‘generic’ encryption-to-key-encapsulation recipe

. 009

"‘* = moduleLWE encryption, plugged into FO

T AR

\ FrodoKEM | = LWE encryption, plugged into FO

- Q
publlc key secret key

Alice Bob



Fujisaki-Okamoto KEMs: initial idea

Goal: Find a public-key method to securely establish symmetric keys K.,.

You may use a public-key encryption scheme that is one-way secure.

Breaking one-wayness:

A must invert @

Bobs iﬁf%] " Bob’s
publlc key - secret key

Alice Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.




Fujisaki-Okamoto KEMs: initial idea

Goal: Find a public-key method to securely establish symmetric keys Ky, .

You may use a public-key encryption scheme that is one-way secure.

Pick random message m

Encrypt m:

m

(b Bob's ﬁ a ( Bob's
publlc key | secret key
Alice Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.



Fujisaki-Okamoto KEMs: initial idea

Goal: Find a public-key method to securely establish symmetric keys Ky, .

You may use a public-key encryption scheme that is one-way secure.

What should Alice and |
Bob pick as K, ?

m Maybe Ky, = m?
Set Ksym =777

Pick random message m
Encrypt m:

(b Bob's ﬁ a ( Bob's
publlc key | secret key
Alice Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.



Fujisaki-Okamoto KEMs: initial idea

Goal: Find a public-key method to securely establish s
You may use a public-key encryption scheme that is o

What should Alice and |
Bob pick as K, ?

m Maybe Ky, = m?
Set Ksym =777

Pick random message m
Encrypt m:

(b Bob's ﬁ o ( Bob's
publlc key | secret key
Alice Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.



Fujisaki-Okamoto KEMs: initial idea

Goal: Find a public-key method to securely establish symmetric keys K, .

You may use a public-key encryption scheme and a hash function.

Decrypt ?
m

Pick random message m
Encrypt m:

Set Ky, = Hash(m)

o
o
n Q
(b Bob's ﬁ o ( Bob's
publlc key | secret key
Alice Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.

m

Set Ky, = Hash(m)




Fujisaki-Okamoto KE

Goal: Find a public-key method to

You may use a public-key encrypti

Pick random message m
Encrypt m:

Set Ky, = Hash(m)

Q: Is this secure?

Breaking the KEM:

Goal: I

Show that A has 0 chance breaking | Seeing an encryption of m,
the KEM without inverting A’s task is to tell Ky, =

encryption. Hash(m) apart from random.

(b Bob’s
public key

Alice

\ 4

Bob's

secret key

Bob

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.



Interlude: the Provable Security paradigm

* Cryptographic design u’v:=:=’..
* Security model (‘game’) el /
* Security ‘proof’ random’

%Breaking the KEM:
A

Seeing an encryption of m,
A’s task is to tell Ky, =
Hash(m) apart from random.

Why formal models? To
avoid ambiguity.




Security ‘proofs’

Intuition: ‘If it’s hard to solve problem P, then design X is secure’

e.g. inverting encryptions e.g. Fujisaki-Okamoto KEM

Proof approach:

* Imagine (black-box) attacker A, breaking X according to security game G (e.g.,
distinguishing KEM output keys from random)

4 Security N
game G X-instance

P

\_ ) " break




Security ‘proofs’

Intuition: ‘If it’s hard to solve problem P, then design X is secure’

e.g. inverting encryptions

Proof approach:

* Imagine (black-box) attacker A, breaking X according to security game G (e.g.,

e.g. Fujisaki-Okamoto KEM

distinguishing KEM output keys from random)

 Construct reduction B that uses A to solve problem P

P-instance

v

-

P
<«

Solution for P-instance

Reduction B
4 Use P-instance ) _
. . X-instance _
to simulate security g
game G )
\_ J break

A




Security ‘proofs’

Intuition: ‘If it’s hard to solve problem P, then design X is secure’

e.g. inverting encryptions e.g. Fujisaki-Okamoto KEM

I'MNOT LAZY, I'M
Proof approach: INAITINGFOR'A REDUCTION

* Imagine (black-box) attacker A, breaking X according to security game G (e.g.,
distinguishing KEM output keys from random)

 Construct reduction B that uses A to solve problem P
4 Reduction B N

-

Use P-instance )

to simulate security
game G
Solution for P-instance K \ ) break

P-instance X-instance

v

A

P
<«

A




Security ‘proofs’: FO example

Intuition: ‘If it’s hard to invert encryptions, then the Fujisaki-Okamoto KEM is secure’

Proof approach:
 Imagine (black-box) attacker A, distinguishing KEM output keys from random

 Construct reduction B that uses A to invert encryptions

4 Reduction B I
4 I

—9
pk, ¢ = encryption of m Pk, ¢, Ksym =:

A

m="7 k \_ ) <’Ieft’/’right’

A




Security ‘proofs’: FO example

Intuition: ‘If it’s hard to invert encryptions, then the Fujisaki-Okamoto KEM is secure’

Proof approach: Qs:
* Imagine (black-box) attacker A, distinguishing KEM outy How can B simulate Ksym?

e Construct reduction B that uses A to invert encryptions How does B invert c?
4 Reduction B N
4 I
pk, ¢ = encryption of m Pk, ¢, Ksym =?

A

m=7? k \_ J <’Ieft’/’right’

A




We'll use the random oracle model (ROM)

Heuristic: Replace hash function
Hash: {0,1}" —» {0,1}™
with ‘oracle box’ for truly random

f:{0,13" - {0,1)™

4 Security N

game G

for design X

o

Oracle for f

(>

/

X-instance _ %

break A



We'll use the random oracle model (ROM)

Reduction B
Oracle for f

Heuristic: Replace hash function
Hash: {0,1}" —» {0,1}™
with ‘oracle box’ for truly random
f:10,13" - {0,1}™

P-instance

(" Use problem A

instance

" Solution for P-instance

(>

o

to simulate
\.security game /

break

e\
=y




Perks of the random oracle model

Reduction B
Oracle for f

Unpredictability of / (x) without asking

oracle for f(x)

(e.g., Ksym = f(m))

Picking the ys smartly enough, B can

a) trick A into solving B’s problem

b) feign secret knowledge it would - in

principle - need for A’s security game

P-instance

v

4 Use problem\

instance

P
<«

Solution for P-instance

& N
73

y

to simulate
\.security game /

.
=y

break




Security argument for FO, using the ROM
Reductiongadeforf \

Intuition: ‘If it’s hard to invert encryptions, then
the Fujisaki-Okamoto KEM is secure’ Qs:
: +Q
\”’y
o

How can B simulate K, ?

How does B invert c?

k

A\
4 N\
vk, ¢ .Use PKE Dk, ¢, Kgym =
Instance g
to simulate )
=7 \__KEM game ~ break A

v

3
|



Security argument for FO, using the ROM

Reduction B
Intuition: ‘If it’s hard to invert encryptions, then Oracle for f

the Fujisaki-Okamoto KEM is secure’ Qs:
v How can B simulate K,,,,? i}’s’
o)

How does B invert c?

* Unpredictability = A has 0 chance telling
:= f(m) from $ (random) unless it queries P
-333 7|

Ksym ’
oracle f on the plaintext m that belongs to ¢
k

m
4 )
pk' I8 Use PKE pk' C, Ksym e $
instance g
to simulate )
\ A

v

P
<«

m=7? KEM game / break

Pr[A breaks Ksym] < Pr[A queries f on m]|




Security argument for FO, using the ROM

- . Reduction B
Intuition: ‘If it’s hard to invert encryptions, then Oracle for f

the Fujisaki-Okamoto KEM is secure’ Qs:
v How can B simulate K,,,,? i}’s’
v How does B invert c? =

* Unpredictability = A has 0 chance telling
K¢ym = f(m) from $ (random) unless it queries 7

oracle f on the plaintext m that belongs to ¢

* Butthen B sees m (it still needs to guess in which k
of the g many RO queries though)

m
4 )
vk, c Use PKE pk, c, Ksym =$
instance g
« to simulate )
\ A

v

m KEM game / break

Pr[A breaks Ksym] < Pr[A queries f on m]|
< g - Pr[B can invert ]




The ROM heuristic seems weird.

© No theoretical justification
Counterexamples: (convoluted) designs that are
* secure in the ROM, but
* insecure when instantiating RO with any hash function

© Good track record for ‘natural’ schemes
Helps identify design bugs
Attacks on ‘ROM-secure’ schemes would be kind of surprising

Skeptical cat
regards

your tale
with
suspicion




Recap: initial idea

Goal: Find a public-key method to securely establish symmetric keys Ky, .

You may use a public-key encryption scheme and a hash function.
N

Set Ky, = Hash(m)

NP 0

(b Bob's ﬁ a ( Bob's
publlc key |

secret key
Alice Bob

Decrypt

Pick random message m

Encrypt m:
m

Set Ky, = Hash(m)

Image source: xkcd.com [Hofheinz Hovelmanns Kiltz 17]: A modular analysis of the Fujisaki-Okamoto Transform.



Security against chosen-ciphertext attacks

Goal: Find a way to establish symmetric keys K,,,,, with chosen-ciphertext security.

— attacker allowed to request decapsulation for any ciphertext.

AREWE THEREYET?

High-level idea: alter how the KEM en-/decapsulates:

Altered decapsulation will
e detect dishonest ciphertexts
* punish those by rejecting to return a meaningful key.

— hard for attacker to request useful decapsulations



‘Full’” FO

Goal: Make decryptions useless for Al

Instead of randomly sampling
encryption randomness 7:

Pick random message m

> User = Hash'(m)

Encrypt m, deterministically <
Set Ky, == Hash(m)

% Bob’s " Bob’s
public key - secret key

Alice Bob

Image source: xkcd.com



Using Hash'(m) as randomness

a

‘Full’” FO

Goal: Make decryptions useless for Al Y
Decrypt | Yin

Only if m encrypts to E””F ;

Pick random message m

Set K, := Hash(m)

Encrypt m, deterministically
Set Ky, = Hash(m)

Otherwise, reject!

Bob S ﬁ o ( Bob's
publlc key | secret key
Bob

Alice
Image source: xkcd.com



Using Hash'(m) as randomness

a

‘Full’

The key for

Decrypt m
@s Hash(m')! YP

Only if m encrypts to m:

Set K, := Hash(m)

Otherwise, reject!

% Bob’s
public key

Image source: xkcd.com

( Bob’s
secret key

Bob



‘Full’” FO

Goal: Make decryptions useless for Al

Decrypt m
Only if m encrypts to m:

Set K, := Hash(m)

Pick random message m

Otherwise, reject!

This creates side-channel
vulnerabilities.

(smarter ‘works-always’
solutions are elusive so far ®)

b ﬂ Q
% Bob's 'Ni I | f Bob's
public key A - secret key

Alice Bob

\ 4

Image source: xkcd.com



‘Full’” FO

Goal: Make decryptions useless for Al m
Decrypt

Only if m encrypts to m:

Pick random message m

Set K, := Hash(m)

» Otherwise, reject!

Not as critical, but still subject to debate:

Which rejection method is better?

* returning explicit failure symbol 17
* returning pseudorandom key?

>

Image source: xkcd.com

( Bob’s
secret key

public key

Alice Bob



Adapting security proofs to quantum attackers

4 )

%

e ‘Online’ functionality (decryption, signing, ...) stays classical

- /

e ‘Offline’ functionality computable by quantum attacker

Random oracle model: Hash functions can be computed offline

— Quantum access to random oracles!



Quantum bits

Quantum bit\




Quantum bits

Notation:
« |0) for ,truly O

Quantum bit\

0




Quantum bits

Notation:
« |0) for ,truly O
e |1) for ,truly 1

} ‘base states’

Quantum bit\

0




Quantum bits

. / Classical bit
Notation:

« |0) for ,truly O

{ ’
e 1) for truly 1° } base states

‘Non- base states’:
* ay|0) + a,|1) for complex numbers «, o,

* Requirement on (o, a4): ‘Superposition’

0

Quantum bit\

0

2 2
1ol + lel]” =1 of |0) and | 1)
Example: uniform (,half-half’) state K
1 1
—10)+—=|1
\/2| ) ﬁl )



Measuring guantum bits

Quantum bit Classical bit

TT D\ PT P

What happens?

0 with probability |Iao||

apl0) + a,|1) ‘collapses’ to {
’ ! 1 with probablllty||a1||



Quantum bitstrings (qubit strings)

Same principle: Put all possible bitstrings of length £ into superposition

E.g., for length 2:

* qubit strings are of the form ayy|00) + a¢1|01) + a15|10) + a;1|11)

e similar requirement on ‘probability coefficients’ a,q, -, @11
00 11

2
||(X00||2+||C¥01||2+||a10||2+ ||a11|| =1
Measuring:

@o0]|00) + ag1|01) + a14|10) + a41]|11) collapses to ‘00 with prob. |Ia00||2etc.



Computing on quantum states

Fact: Any quantum computation can be described by a ‘nicely-invertible’ map U.

Example: a map for strings of length 2

00) - |00) ™ Gate description:
OO S S E T 1) B —]—Ib)
> 11D , CNOT ,
11) > |10) b)) — — |b’ @ b)

Random oracles: How to describe them in a ‘nicely-invertible’ way?



Quantum-accessible random oracles (QROs)

Model the QRO as oracle box O; for random function f: X — Y as follows:

(>
ey
|X>X —‘S”_O B |x>x
Yy — T = ly® F(0))y

So for any classical input value x,
)]0 ---0) = |x)|f ().
(Or simply carries over the probability coefficients)

[Boneh Dagdelen Fischlin Lehmann Schaffner Zhandry 11]



What about our Random Oracle proof?

e ‘See how A ticks’?

e.g., seeing plaintext m belonging to EmF in A’s queries

m now "hides’ in superpositions (linear combinations)

am|m>|ym> T Upot mant m)l)’not m)

How to extract m from the queries? By measuring them?

-

\ (classical) RO J




What about our Random Oracle proof?

e ‘See how A ticks’?

e.g., seeing plaintext m belonging to

ng in A’s queries

behavior?

m now "hides’ in superpositions (linear combinations)

A [T V) + apor mInot m)|ynoe m)
How to extract m from the queries? By measuring them?

Wouldn‘t that change (‘collapse’) them and thereby A’s

Can we still extract interesting queries,
without derailing A too much?

4 h

K (classical) RO /




What about our Random Oracle proof?

e ‘See how A ticks’?

e.g., seeing plaintext m belonging to EmF in A’s queries

‘Random-until-queried’ formalised via quantum query extractor

[Unruh 14 + follow-ups]

Caveat: loss in security parameters (minimal loss still tbd)
— proofs so far only apply to less efficient schemes

[Unruh 14]: Revocable quantum timed-release encryption.
[Ambainis Hamburg Unruh 18]: Quantum security proofs using semi-classical oracles.

[Bindel Hamburg Hovelmanns Hiilsing Persichetti 19]: Tighter proofs of CCA security in the QROM.

Coe )

\ (classical) RO J

[Kuchta Sakzad Stehlé Steinfeld Sun 20]: Measure-rewind-measure: Tighter QROM proofs for one-way to hiding and CCA security.



CCA means dealing with decryption failures

Many post-quantum (e.g. LWE-based) schemes occasionally exhibit decryption errors:

Decrypt(Encrypt(m)) +m

Failure secret-key-dependent AREWE THEREYET?
—> leakage on secret key [D’Anvers 18 + follow-ups] -

Original solution ([HHK17]): Assume worst-case bound ¢ on failure probability

— hard for attacker to find failing ciphertexts in the first place.

[D’Anvers Vercauteren Verbauwhede 18]: On the impact of decryption failures on the security of LWE/LWR based schemes
[Bindel Schanck 20]: Decryption failure is more likely after success

[D’Anvers Rossi Virdia 20]: (One) failure is not an option: Bootstrapping the search for failures in lattice-based encryption schemes



CCA means dealing with decryption failures

Many post-quantum (e.g. LWE-based) schemes occasionally exhibit decryption errors:

Decrypt(Encrypt(m)) +m

Failure secret-key-dependent AREWE THEREYET?
—> leakage on secret key [D’Anvers 18 + follow-ups] -

Original solution ([HHK17]): Assume worst-case bound ¢ on failure probability

— hard for attacker to find failing ciphertexts in the first place.

Irritating facts: Applicability issue:
HHK17 gives Grover-like search term: g2 - ¢ Concrete € — estimations 4 security proofs

£ is a somewhat ‘unnatural’ bound




€ - estimations vs security proofs

£ A success probability in / Necessary?

Correctness game

(pk,sk) Attacker

m

¢ + Enc(pk, m)
return [Dec(sk, ¢) = m]




€ - estimations vs security proofs

£ A success probability in / Necessary?
Correctness game WM Attacker
VAR N
™m
¢ + Enc(pk, m) )

return [Dec(sk, ¢) = m]

Y observed by Manuel Barbosa
while formally verifying Kyber

g-estimator scripts: Applicability issue

estimate = success probability in game without sk Concrete € — estimations 4

security proofs




Improving the treatment of decryption failures

[HHM 22]: Assume more natural bound (sk-less failure finding = estimator-script-compatible ©)

How?
e Classical ROM:
1. helpful decryption query = adversary found failing plaintext (without knowing sk)

2. analyse failure finding in more fine-grained way

*  Quantum:
1. more sophisticated (‘extractable’) QROM [DFMS21] allows ‘almost-classical’ reasoning for 1.

2. search bounds for 2.
3. prove ‘random-until-queried’” argument for extractable QROM

Additional advantage: proof technique agnostic to rejection type
— Aligns the two (previously unaligned) rejection methods in terms of QROM bounds

[Hovelmanns Hulsing Majenz 22]: Failing Gracefully: Decryption Failures and the Fujisaki-Okamoto Transform

[Don Fehr Majenz Schaffner 21]: Online-extractability in the qguantum random-oracle model.



Improving the treatment of decryption failures

[HHM 22]: Assume more natural bound (sk-less failure finding = estimator-script-compatible ©)

How?
e Classical ROM:
1. helpful decryption query = adversary found failing plaintext (without knowing sk)

2. analyse failure finding in more fine-grained way

*  Quantum:
1. more sophisticated (‘extractable’) QROM [DFMS21] allows ‘almost-classical’ reasoning for 1.

2. search bounds for 2.
3. prove ‘random-until-queried’” argument for extractable QROM

Additional advantage: proof technique agnostic to rejection type
— Aligns the two (previously unaligned) rejection methods in terms of QROM bounds

(maybe) disadvantage: new analysis tasks, designers might be fine with € - heuristic.



Improving the treatment of decryption failures

[HHM 22]: Assume more natural bound (sk-less failure finding > estimator-script-compatible ©)

Advantage: proof technique agnostic to rejection type

— Aligns the two (previously unaligned) rejection methods in terms of QROM bounds

(maybe) disadvantage: new analysis tasks, designers might be fine with & - heuristic.

[HM 23]: reconcile ‘rejection method alignment’ with & — heuristic

[Hovelmanns Majenz 23]: A note on failing gracefully: Completing the picture for explicitly rejecting FO transforms using worst-case correctness



Cheaper security for NTRU-based schemes

It’s not good if attackers can easily trigger decryption failures.
(Efficient) NTRU-based schemes: failures not generally independent of plaintext at

hand — leverage for the attacker!

AREWETHEREYET?

High-level idea: Pre-transformations that

e detach decryption failure likelihood from the concrete
plaintext (‘average-case- to worst-case-correctness’);

* without giving up efficiency.

— hard for attacker to trigger decryption failures
— more efficient NTRU-based designs.

[Duman Hovelmanns Kiltz Lyubashevsky Seiler Unruh 21]: A Thorough Treatment of Highly-Efficient NTRU Instantiations



Security against multi-user attacks

Limitation so far: in practice, many users will use this KEM
—> we want to ensure that collected info on Bob does not help with attacking Carol

High-level idea: Use domain separation to bind Bob’s identity (AREWETHEREYET?
(a prefix pref of the public key pk) to .
 how we define validity of a ciphertext:

use Hash'(pref, m) as encryption randomness
* how the symmetric key is computed:

Ksym == Hash(pref,m)

— hard for attacker to exploit information related to Bob to attack Carol.

[Duman Hoévelmanns Kiltz Lyubashevsky Seiler 21]: Faster lattice-based KEMs via a generic Fujisaki-Okamoto transform using prefix hashing.



Thanks for listening!

Fujisaki-Okamoto = ‘PKE-to-KEM cooking recipe’:

 How to use public-key encryption to securely
transmit symmetric keys.

* Underpins all NIST proposals for KEMs

ROM heuristic:
* Helps prevent design flaws.

e Post-quantum (QROM) tools for almost-
classical reasoning are emerging, but

e usually at a loss in efficiency.

Qs I’'m interested about:

FO alternatives
* without re-encrypting?
* without resorting to the ROM?

Best way to ‘punish’ malicious
ciphertexts? (implicit vs explicit reject)

FO-KEM security in the real world
(e.g., side-channels)

How to plug FO-KEMs into
bigger/more complex protocols

QROM: improving tool efficiency




Proof technique: extractable QROM

Idea: ROM-like reduction via preimage extraction In FO proof:
QROM 0: X — Y via compressed oracle (Zhal9) O = Hashyyng: M - R
+ interface Extracts for f: X XY > T f = Encrypt M XR - C
Extract(t): Extracts(c) = ‘preimage’ m
Collapse oracle database such that ‘Surprising’ & PKE soreadness
« foronex, f(x,y) = tforall ythatare PIISING = P

in the database superposition for x
Return x

Extracty commutes nicely with O-operations for sufficiently surprising f.



Compressed oracle (Zhal9)

* Oracle database initalised to D ‘= Qxequery domain 1%, L >p,
* Process queries |x,y > by applying

* Fp_tooutputregister of D,

(uniform superposition, Y >=1
Fp | >:= 5 1, |y > = uniform superposition
\ Y >, |y > orthogonal to 1,uniform

. CNOTgf’C:Y to D,., query output register Y

* Fp_tooutputregister of D,
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