Intro to crypto

PQC Spring School 2024

Kathrin Hövelmanns

March 12th, 2024

700 BC

440 BC

50 BC

'It should not be a problem if [the system] falls into enemy hands.'

Kerckhoffs, 1883

Intro to crypto - K. Hövelmanns

Did you use any cryptography today?

Amazon uses https, https invokes the TLS protocol

TLS uses cryptography

TLS is actually quite ubiquitous:

shopping, banking, Netflix, gmail, Facebook (yes, I'm old), ...

Did you use any cryptography today? LINE

Secure instant messaging:

How many apps do you use?

Intro to crypto - K. Hövelmanns

What do we want from cryptography?

Confidentiality: Keeping secrets secret.

Integrity + authenticity: Ensure that message really came from declared sender + arrived unaltered

Secret-key encryption

Encrypt takes plaintext and key, and produces ciphertext

Decrypt takes ciphertext and key, and produces plaintext

Goal #1: Confidentiality despite espionage (prerequisite: adversary does not know key)

One-time pad

Key K is picked uniformly random from ℓ -bit strings: $K \leftarrow \{0,1\}^{\ell}$

Plain- and ciphertexts are also ℓ -bit strings: $m, c \in \{0,1\}^{\ell}$

 $Encrypt_{K}(m) = K \bigoplus m$: add K and m, modulo 2 in each position

mod 2 = divide by 2, take remainder

e.g., $01 \oplus 11 = (0 + 1 \mod 2)(1 + 1 \mod 2) = 10$

 $Decrypt_K(c) = K \oplus c$

This works: $Decrypt_K(Encrypt_K(m)) = K \oplus Encrypt_K(m) = K \oplus K \oplus m = m$

Perfect security

Formally: (*KeyGen, Encrypt, Decrypt*) **perfectly secure** iff for all plaintexts m_1, m_2 and all ciphertexts c:

$$\Pr[Encrypt_K(m_1) = c] = \Pr[Encrypt_K(m_2) = c]$$

Probability taken over the choice of key K

Important fact (Shannon): only possible if there are as many keys as there are potential messages

One-time pad is perfectly secure

One-time pad: $Encrypt_{K}(m) = K \oplus m$, K chosen randomly

Suppose adversary

- gets *c* = 01
- knows: m is either m_1 = 11 or m_2 = 01
- but doesn't know K

Can it tell which message *m* was?

No: could be
$$m_1$$
= 11 (if K = 10) or m_2 = 01 (if K = 00)
both equally likely!

One-time pad is perfectly secure... if used once

One-time pad: $Encrypt_{K}(m) = K \oplus m$, K chosen randomly

Suppose

- adversary sees first encryption: $c_1 = 01$
- but now also *c*₂ = *c*₁ = **01**
- \rightarrow Adversary learns that same message was sent twice

Computational security

We want to encrypt

- arbitrary amounts of data
- with a single, short key
- \rightarrow perfectly secure symmetric-key encryption infeasible in practice

Computational security ('IND-CPA') as relaxation of security goal:

Telling $Encrypt_{K}(m_{1})$ from $Encrypt_{K}(m_{2})$ should be

- <u>computationally</u> infeasible (IND istinguishability),
- even if you chose m_1 and m_2 yourself (Chosen Plaintext Attack).

Permutations

A permutation is a mapping $\Pi: S \to S$ from some set S to itself that is one-to-one.

In other words: Π has an inverse $\Pi^{-1}: S \to S$.

Example: $S = \{A, B, C\}$

A permutation and its inverse:

x	A	В	С	у	A	В	С
$\pi(x)$	C	A	В	$\pi^{-1}(x)$	B	С	A

Not a permutation:

X	A	В	С
$\pi(x)$	C	В	В

Block ciphers are families of permutations

Block ciphers = two-input functions

E: $Keys \times \{0,1\}^{\ell} \rightarrow \{0,1\}^{\ell}$

so such each key K gives us a permutation

 $E_K: \{0,1\}^\ell \to \{0,1\}^\ell$ $x \mapsto E(K,x)$

(so for each key K, E_K has an inverse E_K^{-1})

(For practice: all functions E_K , E_K^{-1} should be efficiently computable)

Using block ciphers to encrypt

Encrypting $m = m_1 \cdots m_\ell$: $c = E_k(m_1) \cdots E_k(m_\ell)$

Security requirement: c should leak neither m nor k!

С

Decrypting $c = c_1 \cdots c_\ell$: $m = E_k^{-1}(c_1) \cdots E_k^{-1}(c_\ell)$

Data Encryption Standard (DES)

1972: NBS (now NIST) aims to standardise a block cipher

1974: IBM designs Lucifer, which evolves into DES

Widely adopted (e.g., used in ATMs)

High-level design:

- Feistel network, made of successive rounds
- Each round = simple operation, using a bit of the secret key

Data Encryption Standard (DES): Feistel round

Split message into left half (L_0) and right half (R_0)

- Apply some nonlinear (key-dependent) function F to R_0 to get OTP key for L_0

Swap sides

Data Encryption Standard (DES): Feistel round

Image credit: E. Thome

Data Encryption Standard (DES): round chaining

One round looks simple enough

 \rightarrow in practice DES chains as many as 16 rounds

Block cipher evolution

DES key length: 56 bits \rightarrow brute-force vulnerability:

- DES cracker (1998, Electronic Frontier Foundation, US\$ 250,000)
- COPACOBANA (2006, U Bochum + Kiel, US\$ 10,000)

<u>If</u> DES is still used, then as Triple-DES, using three keys k_1 , k_2 and k_3 :

$$c = Encrypt_{k_{3}}\left(Decrypt_{k_{2}}\left(Encrypt_{k_{1}}(m)\right)\right)$$

AES: new standard, established in 2001

- chosen during 'competition' established by National Institute for Standardisation (NIST)
- not Feistel-based: based on Rijndael cipher, designed by Daemen and Rijmen

Modes of operation

So far: block cipher encrypt ℓ bits of message

What if messages are longer than ℓ bits?

Just split + encrypt block-wise? ('Electronic codebook')

Image credit: T. Lange + J. Jean

Modes of operation

So far: block cipher encrypt ℓ bits of message

What if messages are longer than ℓ bits?

Just split + encrypt block-wise? ('Electronic codebook')

ECB penguin by en:User:Lunkwill

Intro to crypto - K. Hövelmanns

Secret-key encryption: wrap-up

Perfect secrecy is expensive (large keys)

One-time pad only is perfectly secure if we switch the key each time

In practice, we use a

- block cipher to encrypt blocks
- secure mode of operation (not ECB!) to encrypt messages longer than a single block

So far: discussed confidentiality, but not authenticity and/or integrity

Does secret-key encryption provide integrity?

Does secret-key encryption provide integrity?

Mr. Krabs knows his block ciphers → tweaks ciphertext so it decrypts to 'pay 99000' instead of 'pay 20'.

Hash functions

Function generating short handle ('fingerprint') for larger pieces of data:

Hash: $\{0,1\}^* \rightarrow \{0,1\}^n$

Quite ubiquitous in crypto:

- message authentication codes (in a few slides: HMAC), e.g. in TLS
- digital certificates for public-key infrastructures
- public-key encryption, digital signatures (in second half of talk)
- secure password storage

Hash functions

Function generating short handle ('fingerprint') for larger pieces of data:

Hash: $\{0,1\}^* \rightarrow \{0,1\}^n$

Security goals: e.g. we could want that the fingerprints

- are hard to compute without knowing the data
- change a lot even when the data is changed only a tiny bit (e.g., bit flip)
- uniquely identify the data (PGP fingerprints)
- do not give enough information to reconstruct the data

Hash functions: security definitions

Function generating short handle ('fingerprint') for larger pieces of data:

Hash: $\{0,1\}^* \to \{0,1\}^n$

• Preimage resistance:

Given output $y \in \{0,1\}^n$, it's hard to find $x \in \{0,1\}^*$ with Hash (x) = y ('preimage'). typically many!

Second preimage resistance:

Given random input $x \in \{0,1\}^*$, it's hard to find $x' \neq x$ with Hash (x) = Hash (x').

Collision resistance:

It's hard to find x and $x' \neq x$ with Hash (x) = Hash (x').

Increasingly harder task for adversary

Hash functions: SHA-2 ('Secure hash algorithm')

Designed by the National Security Agency (NSA), first published in 2001.

Built using the Merkle–Damgård construction (next slide), from a compression function.

Main idea:

- easier to build fixed-size compression
- If you have secure compression function,
 MD gives you a hash function for free

Compression in SHA-2:

Davies-Meyer construction, using specialized block cipher

Family of keyed functions

 ${\rm C}{:}\,\{0,1\}^k\times\{0,1\}^{2n}\to\{0,1\}^n$

with inputs of fixed size 2n that get 'compressed' to half their size.

Box based on slide by E. Thome Intro to crypto - K. Hövelmanns
Hash functions: Merkle-Damgård construction

pad(m):

- Dissect full message m into size-n blocks $M_1, \cdots M_t$ (to fit into compression function C)
- Use padding in the last block M_t to fill it up to size n

Each step takes n message bits as input, together with previous n-bit output h_{i-1} , and compresses these to n-bit block: $h_i = C(M_{i-1}, h_{i-1})$.

Slide based on slide by T. Lange

Hash functions: Merkle-Damgård construction

pad(m):

- Dissect full message m into size-n blocks $M_1, \cdots M_t$ (to fit into compression function C)
- Use padding in the last block M_t to fill it up to size n

Pros of this iterative design:

- Simplifies security reasoning: if compression function C is collision-resistant, then so is H.
- Incremental computation nice for small devices (stream data one block at a time)

Slide based on slide by T. Lange

Hash functions evolution

SHA-1 (predecessor of SHA-2):

- flaws known since 2005, attacks public since 2017 (<u>https://shattered.io/</u>), 2020 (<u>https://sha-mbles.github.io/</u>)
- still used for fingerprints (e.g., git) ⊗

SHA-2:

- currently deemed secure
- widely used in various security applications and protocols

SHA-3: Latest addition to SHA family

- established during NIST standardization effort for hash functions
- not based on Merkle-Damgård, but on 'sponges'
- currently deemed secure

Hash functions good integrity checks?

receive (M', tag')check that tag' = Hash(M')

Q: Does this ensure the integrity of M'?

Hash functions good integrity checks?

Q: Does this ensure the integrity of M'?

No: Mr. Krabs can pick his own c' and compute tag' for $c' \rightarrow$ keyless integrity checks won't work!

MAC = 'checksum', taking key k and message M (plaintext or ciphertext) to produce authentication tag:

MAC: $Keys \times \{0,1\}^m \rightarrow \{0,1\}^t$

 \rightarrow MAC can convince Paypal that *M* really comes from Spongebob

Security goal = UnForgeability: Computing a valid MAC without knowing k is hard.

• UF against Chosen Message Attacks (UF-CMA):

even when given the power to request $MAC(k, M_i)$ on chosen messages M_i , computing a valid MAC(k, M') for a new a new $M' \neq M_i$ is hard.

Hash-based MACs

Proposal: Take hash function Hash: $\{0,1\}^* \rightarrow \{0,1\}^n$ and set

 $MAC_k(M) = Hash(k, M)$

Q: Hard to produce a valid $MAC_k(M')$ if we can request $MAC_k(M_i)$ for any M_i we like?

Hash-based MACs

Proposal: Take hash function Hash: $\{0,1\}^* \rightarrow \{0,1\}^n$ and set

 $MAC_k(M) = Hash(k, M)$

Length extension attack :

Exploit 'chaining' structure of Hash: pick message M = hello, request tag = Hash(k, hello).

- View *hello* in padded block structure + add something: M' = |hell| oXXX | dork
- Tag for *helloXXXdork*:

Hash(k, helloXXXdork) = Hash(Hash(k, hello), dork) = Hash(tag, dork)

Without knowing *k*, we can forge a tag for the message *helloXXXdork*!

Hash-based MACs: HMAC

Puts the key k

- at the end to prevent length-extension attacks (you'd need to know dork k),
- but also at the beginning (to deal with collisions).

Mixes up k via two different padding strings (*ipad*, *opad*), so that the MAC doesn't use the same key twice

 $HMAC_k(M) = Hash(k \oplus opad, Hash(k \oplus ipad, M))$

Authenticated encryption

We looked at confidentiality and authenticity separately:

Goal	Primitive	Security notion
Data confidentiality	Secret-key encryption	IND-CPA : Hard to tell $Encrypt_{K}(m_{1})$ from $Encrypt_{K}(m_{2})$
Data authenticity / integrity	Message authentication code	UF-CMA : Hard to forge $MAC(k, M')$, even when seeing $MAC(k, M_1)$, $MAC(k, M_2)$,

Q: How to achieve both goals at once?

- Encrypt-and-MAC
 - used in SSH

Confidentiality?

Adversaries can detect resent messages because MAC is deterministic

• Encrypt-and-MAC

- used in SSH
- not secure per se (SSH uses modifications)

Integrity?

Not necessarily: may be able to tweak c into c' in a way that its decryption is still the same. Then t is still valid!

• Encrypt-and-MAC

- used in SSH
- not secure per se (SSH uses modifications)
- MAC-then-Encrypt
 - used in TLS 1.2

Confidentiality?

If encryption is IND-CPA secure,

- resent messages are unnoticeable (despite MAC)
- the MAC-then-encrypt construction is also IND-CPA secure

• Encrypt-and-MAC

- used in SSH
- not secure per se (SSH uses modifications)
- MAC-then-Encrypt
 - used in TLS 1.2
 - not secure per se, but can be if done right

Integrity?

Same problem as before!

- Encrypt-and-MAC
 - used in SSH
 - not secure per se (SSH uses modifications)
- MAC-then-Encrypt
 - used in TLS 1.2
 - not secure per se, but can be if done right
- Encrypt-then-MAC
 - used in IPSec
 - Confidentiality: IND-CPA if Encryption is IND-CPA
 - Integrity: no computing right t' for c' without k_{MAC}

Proof sketch: Encrypt-then-MAC is IND-CPA

Want to show: if *Encrypt* is IND-CPA secure, then so is Encrypt-then-MAC.

Encrypt-then-MAC $(k_{ENC}, k_{MAC}, m) = (c, t)$ with $c = Encrypt(k_{ENC}, m)$ and $t = MAC(k_{MAC}, c)$

Tool: Turn attack on Encrypt-then-MAC into attack on *Encrypt* ('security reduction'):

- Show: Successful attack on Encrypt-then-MAC gives successful attack on *Encrypt*
- But *Encrypt* is secure. So no successful attack on Encrypt-then-MAC can exist!

Proof sketch: Encrypt-then-MAC is IND-CPA

Want to show: if *Encrypt* is IND-CPA secure, then so is Encrypt-then-MAC.

Encrypt-then-MAC(k_{ENC}, k_{MAC}, m) = (c, t) with $c = Encrypt(k_{ENC}, m)$ and $t = MAC(k_{MAC}, c)$

Tool: Turn attack on Encrypt-then-MAC into attack on *Encrypt* ('security reduction'):

- Show: Successful attack on Encrypt-then-MAC gives successful attack on *Encrypt*
- But *Encrypt* is secure. So no successful attack on Encrypt-then-MAC can exist!

How to share a secret key?

Image source: xkcd.com

Image source: xkcd.com

Image source: xkcd.com

Bob

Ciphertext indistinguishability games

Indistinguishability under chosen-plaintext attacks = public key version of symmetric-key IND-CPA:

Left game	Right game		
Adversary gets public key			
Adversary picks two messages m1 and m2			
Adversary gets encryption of:			
m1	m2		
Adversary guesses which game it's playing			

Question: Can we have IND-CPA security if encryption is deterministic*?

* = encrypting a message m always gives the same result

Šell

"Sell"??

Ciphertext indistinguishability games

Indistinguishability under chosen-plaintext attacks = public key version of symmetric-key IND-CPA:

Left game	Right game		
Adversary gets public key			
Adversary picks two messages m1 and m2			
Adversary gets encryption of:			
m1	m2		
Adversary guesses which game it's playing			

Question: Can we have IND-CPA security if encryption is deterministic*?

No, but encryption could still be hard to invert.

* = encrypting a message m always gives the same result

Sell

PKE example: Schoolbook RSA

How could Alice encrypt ,sell'?

RSA: computations with primes!

Schoolbook RSA = simplification of PKCS#1, the PKE scheme used in TLS's predecessor.

PKE example: Schoolbook RSA

Pick 2 prime numbers: 5,17 Multiply: 5 * 17 = 85 Bob

PKE example: Schoolbook RSA

Pick numbers *e*, *d* s.th. modulo 85, we always have $(x^e)^d = x$ Bob

$$e^e = 2^5 = 32$$

 $(2^e)^d = 32^{13}$ (large, but has remainder 2!)

Also works for x = 3, x = 4, x = 5, ...

Pick numbers *e*, *d* s.th. modulo 85, we always have $(x^e)^d = x$ Store 85, d Bob

PKE example: Schoolbook RSA

The math:

Convert ,Sell' into integer m < 85

Compute m^e

Divide by 85, keep the remainder

,Sell!'

Use the remainder as

PKE example: Schoolbook RSA

Security intuition: RSA = trapdoor permutation

Like on the previous slides, we take

- as modulus *N* a prime product.
- e, d s.th. dividing $(x^e)^d$ by N always has remainder x.

$$RSA_e: \{1, 2, 3, \dots, N-1\} \rightarrow \{1, 2, 3, \dots, N-1\}$$
$$x \mapsto x^e \mod N$$

By choice of e and d, RSA_e is a permutation

So-called **trapdoor one-way** permutation: Computing x^e is easy, inverting is

- believed to be hard given only *N* and *e* (public key) ← if we chose the parameters appropriately (!)
- easy given trapdoor *d* (the secret key)

 \triangle RSA_e may be hard to invert, but is deterministic \rightarrow no IND-CPA security!

▲ In practice, we need appropriate padding.

Image source: xkcd.com

Image source: xkcd.com

Image source: xkcd.com

Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1

Daniel Bleichenbacher

Bell Laboratories 700 Mountain Ave. Murray Hill, NJ 07974 E-mail: bleichen@research.bell-labs.com

[Bleichenbacher 98]

Ciphertext indistinguishability games

IND-CCA security: Indistinguishability under chosen-ciphertext attacks.

Like IND-CPA:

Left game	Right game	
Adversary gets public key		
Adversary picks two messages m1 and m2		
Adversary gets encryption of:		
m1	m2	
Adversary guesses which game it's playing		

Difference to IND-CPA: Adversary can additionally request decryptions for any ciphertext is chooses...

Wait, can't this always be won?

"Sell"??

"Hold"??

Šell

Ciphertext indistinguishability games

IND-CCA security: Indistinguishability under chosen-ciphertext attacks.

Like IND-CPA:

Left game	Right game	
Adversary gets public key		
Adversary picks two messages m1 and m2		
Adversary gets encryption of:		
m1	m2	
Adversary guesses which game it's playing		

Difference to IND-CPA: Adversary can additionally request decryptions for any ciphertext is chooses... except the provided encryption of m1/m2

"Sell"??

..Hold"?

Sell

Back to what we wanted

Goal: Find a public-key method to securely establish symmetric keys K_{sym} .

(Why not just use PKE to send encrypted messages? Efficiency.)

This is called a Key Encapsulation Mechanism (KEM).

Key Encapsulation Mechanisms (KEMs)

A KEM consists of 3 Algorithms:

- 1. KeyGen: Outputs a public/secret key pair (pk, sk)
- 2. Encapsulate(*pk*): Uses *pk* to create *K*_{sym} and a ciphertext *c*
- **3.** Decapsulate(*sk*, *c*): Uses *sk* to recreate *K*_{sym} from *c*

KEMs: Security definition

A ciphertext c shouldn't leak substantial information about K_{sym} .

What is Bob

up to?

°

Indistinguishability game for KEMs

IND-CPA-KEM security: Indistinguishability for KEMs.

Left game	Right game	
Adversary gets public key		
Adversary gets ciphertext c computed via Encapsulate, together with		
The K_{sym} that accompanied c	A uniformly random K_{sym}	
Adversary guesses which game it's playing		

KEMs in practice: NIST 'competition'

Shared approach: PKE from hardness assumption + Fujisaki-Okamoto 'recipe'

```
Fujisaki-Okamoto (FO) :
```

• 'generic' encryption-to-key-encapsulation recipe

Fujisaki-Okamoto KEMs: initial idea

Goal: Find a way to establish symmetric keys K_{sym} , securely. You may use a public-key encryption scheme.

Fujisaki-Okamoto KEMs: initial idea

Image source: xkcd.com

Fujisaki-Okamoto KEMs: initial idea

Goal: Find a way to establish symmetric keys K_{sym} , securely. You may use a public-key encryption scheme and a hash function.

Image source: xkcd.com

Image source: xkcd.com

Security against chosen-ciphertext attacks

Goal: Find a way to establish symmetric keys K_{sym} with chosen-ciphertext security. \rightarrow attacker allowed to request decapsulation for any ciphertext.

Only high-level: slightly alter how the KEM en-/decapsulates:

Altered decapsulation will

- detect malicious ciphertexts
- punish those by rejecting to return a meaningful key.
- \rightarrow hard for attacker to request <u>useful</u> decapsulations

It is still being researched today which altering strategy works best!

PKEs give us confidentiality (without secret meetings), KEMs make this more efficient.

We have a 'cooking recipe' for turning PKE into a KEM (called Fujisaki-Okamoto).

We used a ,lego' approach very common in crypto:

Q: how can we guarantee data authenticity/integrity?

Digital signatures – a bit like MACs:

Image source: xkcd.com

Digital signatures: security goals

Security goal = UnForgeability: Computing a valid signature without knowing secret key sk is hard.

(Attackers will know the public key, though.)

• UF against Chosen Message Attacks (UF-CMA):

even given the power to request signatures on chosen messages m_i , a valid signature for a new message $m' \neq m_i$ is hard to produce.

Digital signatures – a bit like MACs, but not fully:

Schoolbook RSA signatures

Remember RSA function: We take

- as modulus *N* a prime product.
- e, d s.th. dividing $(x^e)^d$ by N always has remainder $x \to RSA_e$ is a permutation:

$$\mathsf{RSA}_e: \{1, 2, 3, \cdots, N-1\} \rightarrow \{1, 2, 3, \cdots, N-1\}$$
$$x \mapsto x^e \bmod N$$

Like before, we set: public key

$$=(N, e)$$
, secret key $\ll = d$:

Schoolbook RSA signatures

Remember RSA function: We take

- as modulus *N* a prime product.
- e, d s.th. dividing $(x^e)^d$ by N always has remainder $x \to RSA_e$ is a permutation:

m

Verify

Image source: xkcd.com

Image source: xkcd.com

Q: Is this secure?

Can Mr. Krabs - only knowing the public key N, e, but not d – sign a message such that Bob accepts the signature?)

Key-only forgery: Pick arbitrary 'signature' *s*, set $m = s^e \mod N$

 \rightarrow *s* is a valid signature for *m* that will be accepted by Bob!

In practice, however, *m* might look unconvincing to the recipient.

Image source: xkcd.com

Intro to crypto - K. Hövelmanns

Verify

Q: Is this secure?

Can Mr. Krabs - only knowing the public key N, e, but not d – sign a message such that Bob accepts the signature?)

Targetted forgery via signature requests: Choose target message m^* . We'll exploit the multiplicative property of the RSA function ('verification preserves multiplication'):

 $(s_1 \cdot s_2)^e = s_1^e \cdot s_2^e \mod N$

Attack:

- Pick arbitrary message m_1 , and m_1^{-1} such that $m_1 m_1^{-1} \mod N = 1$.
- Request signature s_1 for m_1 : you get $s_1 = m_1^d$ and signature s_2 for $m_2 = m_1^{-1} \cdot m^*$: you get $s_2 = m_2^d$

Sign m^* with $s^* = s_1 \cdot s_2 \rightarrow Bob$ accepts since $(s^*)^e = m^* \mod N$:

 $(s^*)^e = s_1^e \cdot s_2^e = m_1 \cdot m_2 = m_1 \cdot m_1^{-1} \cdot m^* = m^* \mod N$

Alice

Bob

Q: Can we tweak this so it becomes secure?

Idea: Pick hash function Hash: $\{0,1\}^* \rightarrow \{1,2,3,\dots,N-1\}$, sign messages $m \in \{0,1\}^*$ by applying RSA signature approach to Hash(m).

Advantage 1: We can now sign arbitrary-length messages. Advantage 2: Targetted attack a lot harder: need to find m, m_1, m_2 such that $Hash(m) = Hash(m_1) \cdot Hash(m_2) \mod N$

m

$$\begin{array}{c} \text{Sign message } m < N: \end{array} \xrightarrow{RSA_e} : \{1, 2, 3, \cdots, N-1\} \rightarrow \{1, 2, 3, \cdots, N-1\} \\ x \mapsto x^e \mod N \end{array}$$

m and s =

= Hash $(m)^d \mod N$

Alice

$$\mathbf{Bob}$$

Verify

 $s^e = \operatorname{Hash}(m) \mod N$?

d

m

Image source: xkcd.com

Intro to crypto - K. Hövelmanns

Alice's secret key

Alice's public key

HAETAE – provable security

Bob

Image source: xkcd.com

chal

Image source: xkcd.com

Image source: xkcd.com

Image source: xkcd.com
Approach based on identification schemes

Image source: xkcd.com

Intro to crypto - K. Hövelmanns

We have a 'cooking recipe' for building signatures from a one-way trapdoor function

We again used the 'lego' approach:

There are also other 'recipes' you will probably encounter during this week All known recipes require some hardness assumption (e.g., 'inverting x^e is hard') **Q**: how would we prove security against quantum attackers? (next talk)

Intro to crypto - K. Hövelmanns

If time permits: random oracle model (ROM)

Heuristic: Replace hash function Hash: $\{0,1\}^n \rightarrow \{0,1\}^m$ with 'oracle box' for truly random $f: \{0,1\}^n \rightarrow \{0,1\}^m$

If time permits: random oracle model (ROM)

Perks of the random oracle model

- Unpredictability of f(x)
- 'Tricking A': Picking the ys smartly enough, B can
 - a) trick A into solving B's problem
 - b) feign secret knowledge it would in principle need for *A*'s security game

Practice example: ROs as one-way functions

Practice example: ROs as one-way functions

Say A makes q many queries to f

- Per query $x \neq x^*$: f returns y^* with probability $\frac{1}{2}$
- A queries f on x^* with probability $\leq \frac{q}{2n}$

• If no query yields y^* : $f(x') = y^*$ with probability $\frac{1}{2!}$

$$\Pr[A \text{ wins}] \lessapprox \frac{q}{2^n} + \frac{q}{2^n} + \frac{1}{2^n}$$

th probability
$$\frac{1}{2^n}$$

 $y \leq \frac{q}{2^n}$
ith probability $\frac{1}{2^n}$
One-way game for RO f
Pick random x^*
Set $y^* \coloneqq f(x^*)$
A wins if $f(x') = y^*$
 y^*

Oracle for $f: \{0,1\}^n \to \{0,1\}^n$

This heuristic seems weird.

- ③ No theoretical justification
 - Counterexamples: designs that are
 - secure in the ROM, but
 - insecure when instantiating RO with any hash function
- So far: good track record for 'natural' schemes
 Helps identify design bugs

