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Context: NIST ’competition’

Goal: Quantum-secure public-key encryption, key exchange, signatures

Pre-quantum: DH key exchange + authentification

Post-quantum:
• DH key exchange: Broken
• Quantum Signatures: Quite costly → Can we do without them?
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Prior work on AKE without signatures

AKE from KEMs: Already proposed in BCGNP08 and FSXY12

... but
possibly unfit for post-quantum security
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Outline

1. The Fujisaki-Okamoto transformation
2. Two-move authenticated key exchange (AKE)
3. Our protocol: Fujisaki-Okamoto AKE
4. Open questions
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Overview:
The Fujisaki-Okamoto

transformation
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Limitations of the original work

Decryption failure?

Reminder: Property of many lattice-based encryption schemes

HHK17: Even negligible probability might affect security!

FO transformation · AKE · Our protocol: FO-AKE · Open questions 5 / 28



The importance of decryption failures

Intuition: Negligible probability → negligible issue

... but:

Active attacker can query decapsulation oracle on any ciphertext

Failure depending on sk → leaks information

Reflected in D’AVV18 attack

Possible solutions:
1. Only build schemes with perfect correctness

• Costly /
• What about the NIST proposals? /

2. Give proofs that deal with non-perfect correctness
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Short excursion:
The Quantum Random Oracle

Model
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Random Oracle Model (ROM)

Proof heuristic: Replace hash fct. with perfectly random fct. H

Common proof strategy:

A can distinguish H(x∗) from random

⇒ Reduction learns preimage x∗ (and x∗ solves P)

Example: Learning message m∗ ⇒ Inverting a ciphertext

Question: What if A is quantum?

FO transformation · AKE · Our protocol: FO-AKE · Open questions 9 / 28



Random Oracle Model (ROM)

Proof heuristic: Replace hash fct. with perfectly random fct. H

Common proof strategy:

A can distinguish H(x∗) from random

⇒ Reduction learns preimage x∗ (and x∗ solves P)

Example: Learning message m∗ ⇒ Inverting a ciphertext

Question: What if A is quantum?

FO transformation · AKE · Our protocol: FO-AKE · Open questions 9 / 28



Random Oracle Model (ROM)

Proof heuristic: Replace hash fct. with perfectly random fct. H

Common proof strategy:

A can distinguish H(x∗) from random

⇒ Reduction learns preimage x∗ (and x∗ solves P)

Example: Learning message m∗ ⇒ Inverting a ciphertext

Question: What if A is quantum?

FO transformation · AKE · Our protocol: FO-AKE · Open questions 9 / 28



Quantum Random Oracle Model (QROM)

Scenario: Quantum adversary interacting with non-quantum network ⇒

• "Online" primitives (decryption, signing, ...) stay classical
• "Offline" primitives (like hash functions) computable in superposition

What’s new: A might evaluate hash function on some superposition∑
x∈X

αx |x⟩

Possibility of A pulling ’quantum tricks’ → More complicated proofs /

Example: How do we extract a particular preimage?
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Extracting preimages with ’Oneway to Hiding’

"Random-until-QUERY":

in the quantum world (’Oneway to Hiding’)

:

Pr [A distinguishes H(x∗) from $] ≤ ϵ 2q ·
√

ϵ

ϵ := Pr [A queries H on x∗]

and q := # queries to H

Recent improvements :

Variant Bound
Semi-classical [AHU18] 2√qϵ

Double-sided [BH+19] 2
√

ϵ
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Extracting preimages with ’Oneway to Hiding’

"Random-until-QUERY" in the quantum world (’Oneway to Hiding’):

Pr [A distinguishes H(x∗) from $] ≤ ϵ 2q ·
√

ϵ

ϵ := Pr [A queries H on x∗]

ϵ := Pr [Measuring a random query to H gives us x∗]
and q := # queries to H

Recent improvements :

Variant Bound
Semi-classical [AHU18] 2√qϵ

Double-sided [BH+19] 2
√

ϵ

FO transformation · AKE · Our protocol: FO-AKE · Open questions 11 / 28



Extracting preimages with ’Oneway to Hiding’

"Random-until-QUERY" in the quantum world (’Oneway to Hiding’):

Pr [A distinguishes H(x∗) from $] ≤ 2q ·
√

ϵ

ϵ := Pr [A queries H on x∗]

ϵ := Pr [Measuring a random query to H gives us x∗]
and q := # queries to H

Recent improvements :

Variant Bound
Semi-classical [AHU18] 2√qϵ

Double-sided [BH+19] 2
√

ϵ

FO transformation · AKE · Our protocol: FO-AKE · Open questions 11 / 28



Extracting preimages with ’Oneway to Hiding’

"Random-until-QUERY" in the quantum world (’Oneway to Hiding’):

Pr [A distinguishes H(x∗) from $] ≤ 2q ·
√

ϵ

ϵ := Pr [A queries H on x∗]

ϵ := Pr [Measuring a random query to H gives us x∗]
and q := # queries to H

Recent improvements :

Variant Bound
Semi-classical [AHU18] 2√qϵ

Double-sided [BH+19] 2
√

ϵ

FO transformation · AKE · Our protocol: FO-AKE · Open questions 11 / 28



The FO transformation
in the QROM
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Overview: Common ground of all current FO proofs

PKE
passive

KEM
active

PKE’ (det.)
’intermediate’

T

(Derandomisation)

U
(H

ash
ing

)

"FO = U ◦ T"
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Transformation T

Encrypt-with-Hash construction: PKE′ := T[PKE, G]

• Encryption: Enc′(m) := Enc(m; G(m))
→ deterministic!

Use G(m) as Enc’s randomness

FO transformation · AKE · Our protocol: FO-AKE · Open questions 14 / 28
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Transformation U

KEM := U[PKE′, H]

• Encapsulation:
1. Choose uniformly random plaintext m
2. Use Enc′ to encrypt m to ciphertext c
3. k := H(m, c)

or H(m)

• Decapsulation:
1. Use Dec′ to decrypt c to plaintext m′

2. If c decrypts to ⊥
3. return ⊥

or pseudorandom value ("implicit rejection")

4. return k ′ := H(m′, c)

or H(m′)

Actually, there are many different variants of U.
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Simplified overview: Subsequent CCA bounds
Goal: Tightly relate FO-KEM security to that of the underlying scheme

Underlying notion CCA Bound (simplified)
Wishful thinking CPA CPA (achieved in ROM)

This work CPA
√

q · CPA

BHHHP19 OW (det.)
√
��q· OW

KSSSS20 OW (det.) q · OW
CPA q2 · CPA

q := # random oracle queries

FO transformation · AKE · Our protocol: FO-AKE · Open questions 18 / 28
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BHHHP19 OW (det.)
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PKE already deterministic → sufficient to apply second step (U)
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Wishful thinking CPA CPA (achieved in ROM)
This work CPA

√
q · CPA

BHHHP19 OW (det.)
√
��q· OW

KSSSS20 OW (det.) q · OW
CPA q2 · CPA

q := # random oracle queries

’Rootless’ bound:

Achieved by new extraction technique (’Measure-rewind-measure’)
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Simplified overview: Subsequent CCA bounds
Goal: Tightly relate FO-KEM security to that of the underlying scheme

Underlying notion CCA Bound (simplified)
Wishful thinking CPA CPA (achieved in ROM)
This work CPA

√
q · CPA

BHHHP19 OW (det.)
√
��q· OW

KSSSS20 OW (det.) q · OW
CPA q2 · CPA

q := # random oracle queries

Cave: Results for different variants (like on the U-Slide), with additional
requirements

More details at https://simons.berkeley.edu/talks/cca-encryption-qrom-i
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Authenticated key exchange
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Our setting: 2-move protocols

Alice (skA, pkA) Bob (skB , pkB)

M

M ′

Goal: K = K ′ (w.o.p.), and K ≈c $

FO transformation · AKE · Our protocol: FO-AKE · Open questions 20 / 28



Attacking 2-move protocols

In practice, there are many ways to attack:

Learning session keys of already established sessions

Corrupting a user → Learning skA or skB (or even both!)

Learning the session’s state or the randomness that was used

’Tampering’: Modifying the exchanged messages

Many different security models that come with subtle differences
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Our security model
Two (game-based) models for two-move AKE:

1.) Key indistinguishability against active attacks

Captures state-of-the-art attack capabilities:
• Key compromise impersonation attacks (KCI)
• Maximal exposure attacks (MEX)
• Reflection attacks
• Weak perfect forward secrecy (wPFS)

2.) Slightly weaker variant of the model above:

Disallow state reveal for the test session if adversary ’tampers’
• Only affects

• initiator session
• time interval between sending and receiving

• In practice: restricted by initiator’s waiting time

Essentially same notion as the one used in FSXY12
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Our protocol
Alice (skA, pkA)

mB ∈R M
T-encrypt mB with Bob’s pkB

(s̃k, p̃k)← Gen

Decrypt cA to mA

Decrypt c̃ to m̃

Bob (skB , pkB)

mA ∈R M
T-encrypt mA with Alice’s pkA

m̃ ∈R M
T-encrypt m̃ with p̃k

Decrypt cB to mB

p̃k,

cB

cA

, c̃

Goal: Authentication and key indistinguishability

Strategy: ’Multi-user FO’:

Exchange FO-ciphertexts = ciphertexts according to T-Transform

Key computation: Multi-user variant of U-Transform

Hash whole transcript: K := H(pkA, pkB , mA, mB , cA, cB)
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Freshness: Add session-specific (’ephemeral’) FO communication

Include ’ephemeral transcript’ in hash:
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Security of our protocol (Intuition)

Alice (skA, pkA)

mB ∈R M
T-encrypt mB with Bob’s pkB

(s̃k, p̃k)← Gen

Decrypt cA to mA

Decrypt c̃ to m̃

Bob (skB , pkB)

mA ∈R M
T-encrypt mA with Alice’s pkA

m̃ ∈R M
T-encrypt m̃ with p̃k
Decrypt cB to mB

p̃k, cB

cA, c̃

E
p̃k, cB

cA, c̃

K := H(pkA, pkB , p̃k, mA, mB , m̃, cA, cB , c̃)

Observation: Nontrivial strategy → E only obtains 2 out of (mi , mj , m̃)
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K := H(pkA, pkB , p̃k, mA, mB , m̃, cA, cB , c̃)

Observation: Nontrivial strategy → E only obtains 2 out of (mi , mj , m̃)

With observation, AKE proof ≈ multi-user version of our KEM proof
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Observation: Nontrivial strategy → E only obtains 2 out of (mi , mj , m̃)

Exception: Aforementioned ’state reveal attack’:
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Security of our protocol (Intuition)

Alice (skA, pkA)

mB ∈R M
T-encrypt mB with Bob’s pkB

(s̃k, p̃k)← Gen

Decrypt cA to mA

Decrypt c̃ to m̃
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K := H(pkA, pkB , p̃k, mA, mB , m̃, cA, cB , c̃)

Observation: Nontrivial strategy → E only obtains 2 out of (mi , mj , m̃)

Exception: Aforementioned ’state reveal attack’:

Alice’s state: independent of skA

Bob’s response (and mA, m̃): independent of skB
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Observation: Nontrivial strategy → E only obtains 2 out of (mi , mj , m̃)

Exception: Aforementioned ’state reveal attack’:

Reveal the state to learn mB and pretend to be Bob to control mA, m̃
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Security of our protocol (Intuition)

Alice (skA, pkA)
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K := H(pkA, pkB , p̃k, mA, mB , m̃, cA, cB , c̃)

Observation: Nontrivial strategy → E only obtains 2 out of (mi , mj , m̃)

Exception: Aforementioned ’state reveal attack’:

To succeed, E has to reveal Alice’s session state before time-out
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Open questions

Active security requires ’worst-case’ correctness
→ Can we soften this requirement, generically?

Passive-to-active transformations starting from KEMs?
→ Possible applications in AKE and when defining "hybrid" modes

KSSSS20: New quantum extraction technique → Tighter bounds

Can we apply MRM to our proof structure?
→ Tighter bounds for PKE and AKE → Efficiency
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